

Recent Belle II results on decaytime-dependent CP violation

M.-C. Chang, On behalf of Belle II Collaboration, Fu Jen Catholic University(FJCU)

Outline

- Introduction
- Time-dependent study of radiative $b \rightarrow s\gamma$ decays • $B^0 \rightarrow K^*(K_s^0 \pi^0)\gamma$
- Time-dependent study of penguin dominate b → sqq decay
 B⁰ → K⁰_sK⁰_sK⁰_s
- Summary

Introduction

- $B^0 \overline{B}^0$ mixing
 - B meson flavor changes via a box diagram and flavor oscillates with time evolution
- In Belle II, B meson pairs are produced from Y(4S) decay and mixing occurs simultaneously in two B mesons due to quantum entanglement.

Fig1. box diagram

Introduction

- Time-dependent analyses are performed by measuring a decay time difference of B mesons Δt .
- Number of Mixed $(B^0 B^0)$ or $\overline{B}^0 - \overline{B}^0$) and Un-mixed $(B^0 - \overline{B}^0)$ events:
 - $N_M \propto e^{-\frac{|\Delta t|}{\tau_{B^0}} [1 \cos(\Delta m \Delta t)]}$
 - $N_U \propto e^{-rac{|\Delta t|}{\tau_{B^0}} [1 + \cos(\Delta m \Delta t)]}$

Fig2. Decay time difference of B mesons Λt

Time-dependent CP violation (TDCPV)

- Time-dependent CP asymmetry
 - $A_{CP}(\Delta t) = \frac{P(\overline{B}^0(\Delta t) \to f_{CP}) P(B^0(\Delta t) \to f_{CP})}{P(\overline{B}^0(\Delta t) \to f_{CP}) + P(B^0(\Delta t) \to f_{CP})} =$

 $sin\Delta m\Delta t + Acos\Delta m\Delta t$

- SM: S, A are very small
- S: Time-dependent CPV parameter
- A(=-C): Direct CPV parameter
- Δm: B-B mass difference
- Δt: B-B decay time difference

c/ū

Vertexing

Fig4. An example of reconstruction of decay vertices of B mesons, $B^0 \rightarrow K_S \pi^0 \gamma$.

B mesons are produced through asymmetric energy collision of e⁺e⁻ beams, displacement of decay vertices is measured $\Delta z \sim \beta \gamma \Delta t$ relies on vertexing of both B mesons (B_{sig} and B_{tag}), it converts to Δt as known as boost effect

Fig5. An example of reconstruction of decay vertices of B mesons if no charge track originates at B_{sig} vertex, $B^0 \rightarrow K_S \pi^0 \gamma$.

- Beam spot constraining technique if no charge track originates at B_{sig} vertex
- Extrapolate K_s flight to the beam spot
 - Fit $\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$ with kinematical constraint
 - Validate using $B^0 \rightarrow J/\psi K_s$ control sample
- The vertex precision is related to vertex detector resolution

$B^0 \rightarrow K^*(K_s \pi^0) \gamma$ results

Fig6. $B^0 \rightarrow K_S \pi^0 \gamma$.

- Variation of CP asymmetries along m(K_Sπ⁰) expected small
- Check the K^{*}(892) range

didn't find released results in Belle II web page. Who should I talk to?

Summary of the $b \rightarrow s\gamma$ **mode**

- Time-dependent analyses of the $b \rightarrow s\gamma$ mode have been performed by Belle II
 - $B^0 \to K^*(K^0_s \pi^0) \gamma$
- Measurements compatible with CP conservation
- All measurements limited by statistics

Penguin dominate: $B^0 \rightarrow K_s K_s K_s$ $P(\Delta t) = \frac{e^{-\overline{\tau_{B^0}}}}{4\tau_{B^0}} (1 + q[Ssin(\Delta m_d \Delta t) + Acos(\Delta m_d \Delta t)])$ The SM predicts that $\mathcal{S} = -\sin 2\phi_1$ and $\mathcal{A} = 0$ The deviation of $\sin 2\phi_1$ from $B^0 \rightarrow J/\psi K_s^0$ is Dg predicted to be 0.06 ± 0.00

Fig8. Penguin amplitude for the $B^0 \rightarrow K_S K_S K_S$ decays

Penguin dominate: $B^0 \rightarrow K_s K_s K_s$

- Belle experiment using 772 M BB pairs
 - $S = -0.71 \pm 0.23 (stat) \pm 0.05 (syst)$
 - $A = 0.12 \pm 0.16 (stat) \pm 0.05 (syst)$
- BaBar experiment using 468 M $B\overline{B}$ pairs
 - $S = -0.94 \pm \frac{0.24}{0.21}$ (*stat*) ± 0.06 (*syst*)
 - $A = 0.17 \pm 0.18 (stat) \pm 0.04 (syst)$

Belle II data in this analysis using 200 M $B\overline{B}$ pairs

- $S = -1.86 \pm 0.83 (stat) \pm 0.09 (syst)$
- $A = -0.22 \pm 0.29 (stat) \pm 0.04 (syst)$

Fig8. Penguin amplitude for the $B^0 \rightarrow K_S K_S K_S$ decays

The M_{bc} distributions: $B^0 \rightarrow K_s K_s K_s$

Systematic uncertainties: $B^0 \rightarrow K_s K_s K_s$

 Table 1: Systematic uncertainties

Source	δS	$\delta \mathcal{A}$
Vertex reconstruction	0.025	0.022
Flavor tagging	0.079	0.030
Resolution function	0.012	0.006
Physics parameters	0.008	0.000
Fit bias	0.003	0.002
Signal fraction	0.011	0.007
Background Δt shape	0.011	0.001
Detector misalignment	0.002	0.004
Resolution model	0.001	0.003
Tag-side interference	0.014	0.015
Total	0.087	0.042

Dominate systematic uncertainties is Flavor tagging

Δt **Results:** $B^0 \rightarrow K_s K_s K_s$

measurements limited by statistics

Summary of the $b \rightarrow sq\overline{q}$ mode

- Time-dependent analyses of the $b \rightarrow sq\overline{q}$ mode have been performed by Belle II
 - $B^0 \to K_s K_s K_s$
 - Measurements compatible with CP conservation

Belle II data in this analysis using 200 M $B\overline{B}$ pairs

- $S = -1.86 \pm 0.83 (stat) \pm 0.09 (syst)$
- $A = -0.22 \pm 0.29 (stat) \pm 0.04 (syst)$
- All measurements limited by statistics

backup

Introduction

 Time-dependent analyses are performed by measuring a decay time difference of B mesons ∆t.

Fig2. Decay time difference of B mesons ∆t

Time-dependent CP violation (TDCPV)

- Induced by quantum interference with decay to the CP-eigenstates
- Time-dependent CP asymmetry
 - $A_{CP}(\Delta t) = \frac{P(\overline{B}^0(\Delta t) \to f_{CP}) P(B^0(\Delta t) \to f_{CP})}{P(\overline{B}^0(\Delta t) \to f_{CP}) + P(B^0(\Delta t) \to f_{CP})} =$
 - $sin\Delta m\Delta t + Acos\Delta m\Delta t$
 - SM: S, A are very small
 - S: Time-dependent CPV parameter
 - A(=-C): Direct CPV parameter
 - Δm: B-B mass difference
 - Δt: B-B decay time difference

Fig3. Tree with box diagram.

c/ū

$B^0 \rightarrow K^*(K_s \pi^0) \gamma$ results

Variation of CP asymmetries along $m(K_S \pi^0)$ expected small Check inside/outside the $K^*(892)$ range

can' t find the new results in Belle
 II web page. Who should I talk to?

BELLE2-CONF-PH-2021-014

Fig8. Penguin amplitude for the $B^0 \rightarrow K_S K_S K_S$ decays

Performance highlights from Belle II

The observed Cherenkov rings for pion tracks in data from $K_s^0 \rightarrow \pi^+\pi^-$ decays with track momentum of p = 0.74 GeV/c(top) and p = 1.39 GeV/c(below). The red and blue rings show the expected rings for the pion and electron hypotheses respectively.

#2022 Belle II ICHEP note

Performance highlights from Belle II

Binary ($R_{K\pi} > 0.5$) K/π separation performance as a function of the laboratory frame momentum measured with the $D^{*+} \rightarrow$ $D^0\pi_s^+$, $D^0 \to K^-\pi^+$ sample. Upward pointing triangles: K identification efficiency for the dependent MC (empty blue triangles) and data (filled red). Downward pointing triangles: π mis-identification probability for MC (empty blue) and data (filled red).

#2022 Belle II ICHEP note

Performance highlights from Belle II

Binary ($R_{K\pi} > 0.5$) K/ π separation performance as a function of the $cos\theta_{lab}$ measured with the $D^{*+} \rightarrow$ $D^0\pi_s^+, D^0 \rightarrow K^-\pi^+$ sample. Upward pointing triangles: K identification efficiency for the dependent MC (empty blue triangles) and data (filled red). Downward pointing triangles: π mis-identification probability for MC (empty blue) and data (filled red).

#2022 Belle II ICHEP note

Belle II, international collaboration

Member Institutes: (based on B2MMS data as on Aug 17th, 2019)

#2022 Belle II public webpage 24

Detector: Belle-II

EM Calorimeter CsI(TI), waveform sampling electronics

electrons (7 GeV)

Vertex Detector 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

Central Drift Chamber Smaller cell size, long lever arm

KL and muon detector

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)