Belle II status on muon g-2 related measurements

1

Yuki Sue

Nagoya University on behalf of the Belle II collaboration

The Muon g-2 Theory Initiative Workshop, September 6th, 2022

Muon g-2

2

- There is >4 σ discrepancy between experiment and SM.
- Recent Lattice-QCD results claim inconsistency from datadriven approaches value.
- Uncertainty dominated by HVP and HLbL contribution.
- Belle II can provide the theoretical inputs using large statistics data.

 $\pi^0\gamma$ E>1.8 GeV

 $\pi^+\pi^-$

 $\pi^+\pi^-\pi$

K⁺K⁻

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

 $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$

 a_{μ}^{HVP}

Measurement at B-factory

- Radiative return method to scan the energy of hadronic system at fixed energy
- Advantages
 - Accessible to the entire hadronic mass range with identical dataset
 - Boosted final hadrons
- Disadvantages
 - Poorer mass resolution
 - Background process

14 14

SuperKEKB Collider

Particle Identification

- Aerogel RICH in the forward endcap
- Time-of-Propagation counter in the barrel
- K/π ID : K efficiency 90% at 1.8% π fake

Electromagnetic Calorimeter (ECL)

- CsI(TI) crystals + Waveform sampling
- Electron ID eff. 90% at <0.1% fake
 - Energy resolution 1.6-4%
- 94% of solid angle coverage

K-long and Muon Detector (KLM)

- Alternating iron and detector plates
- Scintillator / Resistive Plate Chamber
- Muon ID efficiency 90% at 2% fake

Vertex Detector (VXD)

- Inner 2 layer : Pixel
- Outer 4 layer : Double side strip
- vertex resolution ~ 15µm

Central Drift Chamber (CDC)

- 91% of solid angle coverage
- p_T resolution ~ 0.4%/p_T
- dE/dx resolution 5% (low-p PID)

Trigger and DAQ

- Trigger rate : $0.5 \rightarrow 30 \text{ kHz}$ (design)
- New trigger line for low-multiplicity events
- Constant improvements of trigger algorithm

Operation Status

- Keep operation under COVID-19
- Record instantaneous luminosity : 4.7×10^{34} /cm²/s
 - ~90% data taking efficiency : 1-2/fb/day
- Recorded data : 424 /fb
 - 363 fb⁻¹ at √s = 10.58 GeV
 - 42 fb⁻¹ at 60 MeV below 10.58 GeV
 - 19 fb⁻¹ at 10.75 GeV

Operation Plans

- Long Shutdown 1 started last June.
 - 2022 summer 2023 autumn
 - Installation of a complete VXD
- Another long shutdown is planned around 2027 for upgrades (Undecided).

Int. L[ab⁻¹]

Performance

Physics performance for cross section measurements at Belle II

- It is expected that there will be no significant differences from the BABAR measurement, both in analytical methods and in major sources of systematic uncertainty.
- Large statistics of Belle II provides not only signal events but for control samples to estimate systematic uncertainty.
 - 232 fb-1 (BABAR previous result for ππ) → ~450 fb-1 (BABAR full dataset)
 - ~1000 fb-1 (Belle II near future)
- Major items to be improved
 - Trigger efficiency
 - Tracking efficiency
 - Photon detection efficiency
 - Luminosity
 - Particle identification ($\pi/\mu/K$)

Performance : Trigger Efficiency

- The most of ee->hadron cross section have not been measured at BELLE.
- Event loss due to bhabha veto was a serious issue.
- Bhabha veto has been upgraded to avoid the inefficiency and uncertainty.
 BELLE bhabha veto was based on only θ angle.
 - New 3D bhabha veto uses θ and Φ angle.

Performance : Trigger Efficiency

- The most of energetic ISR events can be triggered by ECL energy trigger.
 - ECL total energy of forward and barrel > 1 GeV
 - ISR photon satisfies this criteria.
 - The efficiency > 99%
 - Event loss due to 3D bhabha veto is suppressed.

Performance : Tracking Efficiency

- Tracking efficiency is confirmed by tag-and-probe method on $ee \rightarrow \tau \tau \rightarrow 1 \times 3$ prong.
 - 3 good quality tracks for tag
 - Look for 4th track for probe
- Uncertainty for tracking efficiency is 0.30% per track.
 - 0.35% at BELLE

Data/MC discrepancy of tracking efficiency

Performance : Photon Detection Efficiency

- Photon detection efficiency is confirmed using $ee \rightarrow \mu\mu\gamma$ events.
 - Detection efficiency is estimated by taking match between a ECL cluster and a missing momentum of dimuon system.
- Data/MC agreement is good. Uncertainty for photon detection efficiency is 0.30%.
 - ~2% discrepancy at BELLE

Progress of ongoing analysis

- $e^+e^- \rightarrow \pi^+\pi^-$
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
- $e^+e^- \rightarrow KK\pi$
- $\gamma^*\gamma \rightarrow \pi^0$

$e^+e^- \rightarrow \pi^+\pi^-$

- Precision target : 0.5% of $a_{\mu}(2\pi)$
- Sanity check with < 2 fb⁻¹ data
 - Generator (PHOKHARA 10.0)
 - Kinematic fitting tools
 - Trigger efficiency
 - (Beam) Background
- Performance study is ongoing
 - Tracking efficiency
 - PID study
- Plan for intermediate result is under discussion.

Sources	0.3-0.4	0.4–0.5	0.5-0.6	0.6-0.9	0.9–1.2
Trigger/filter	5.3	2.7	1.9	1.0	0.7
Tracking	3.8	2.1	2.1	1.1	1.7
π -ID	10.1	2.5	6.2	2.4	4.2
Background	3.5	4.3	5.2	1.0	3.0
Acceptance	1.6	1.6	1.0	1.0	1.6
Kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9
Correl. $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0
$\pi\pi/\mu\mu$ non-cancel.	2.7	1.4	1.6	1.1	1.3
Unfolding	1.0	2.7	2.7	1.0	1.3
ISR luminosity	3.4	3.4	3.4	3.4	3.4
Sum (cross section)	13.8	8.1	10.2	5.0	6.5

ee $\rightarrow \pi\pi$ uncertainty at BABAR [Phys.Rev.D 86 (2012), 032013]

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$: at BELLE

- $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ is the 2nd largest contribution to HVP term.
- The measurement in the mass range of $0.73 < \sqrt{s'} < 3.5$ GeV was attempted using 526.6 /fb data.
- Large uncertainty of level-1 trigger efficiency prevents publication, and the result is recorded in a PhD thesis.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$: Status

- Aim ~2% precision measurement using 189 fb⁻¹ data
- The most of analysis procedure is fixed
 - Signal efficiency of 10% is expected.
- Trigger uncertainty can be well suppressed.
 - 3D bhabha veto introduced from 2021 causes signal loss by ~15%.
 - Collected data of 100 /fb without 3D bhabha veto.

$\gamma\gamma^* \rightarrow \pi^0$: Spacelike π^0 Transit Form Factors

- Exchange of two photons in ee collisions
- $d\sigma/dQ^2 \propto |F(Q^2)|^2/Q^2$
- Contribution to $a_{\mu}^{HLbL}(\pi^0)$ at low-Q2 region

$\gamma\gamma^* \rightarrow \pi^0$: Preliminary test

- Single-tagged measurements using 12.4 fb⁻¹ data taken on 2019.
- Good agreement with previous measurements in $Q^2 = 10 \text{ GeV}^2$ region.
 - Efficiency at low Q² improved due to new trigger.
- For measurement with higher statistics
 - Implementation of signal generator
 - Precise simulation of virtual compton scattering
 - Optimization of BDT

Extra : Dark sector search

Z' to invisible

- $L_{\mu} L_{\tau}$ model : Z' couples only to μ and τ
- Could provide solution for R(K(*)) and g-2
- Analyzing 79.7 fb⁻¹ of data (2019+2020)
- Signature : $\mu\mu/\tau\tau$ final state wit missing energy (Z' => invisible)
- Dominant backgrounds : $ee \rightarrow \mu\mu(\gamma)$, $ee \rightarrow \tau\tau(\gamma)$, $ee \rightarrow ee\mu\mu$

Z' to invisible

- No excess found
- Excluded invisible Z' as explanation for g-2 ۲ in range $0.8 < M_{7'} < 5.0 \text{ GeV/c}^2$
- To be submitted to PRL

Belle II $\int L dt = 79.7 \text{ fb}^{-1}$

 10^{2}

10³

10²

Summary

- Belle II has collected 424 fb⁻¹ data, and data taking keeps going for the goal of 50 ab⁻¹.
 - The SuperKEKB/Belle II is under long shutdown until autumn of 2023.
 - New trigger for ISR-related events is working well.
- Four data analysis relating to muon g-2 are active and in progress.

– π⁺π⁻

- Aim high precision measurement of 0.5%.
- Focusing on data/MC sanity checks using tiny data of less than 2 /fb.
- $\pi^+\pi^-\pi^0$
 - Aim to publish result with ~2% precision using 189 /fb data in a year.
- KK π
 - The analysis is ongoing with ~400 /fb data.
- $\gamma \gamma^* {\rightarrow} \pi^0$
 - Preliminary check using 12 /fb data is consistent with previous measurements.
 - Further analysis is underway for results using larger dataset.
- Results constraining dark sector began using the initial data set.
 - Invisible Z' search excluded a part of mass range as explanation for g-2.

25

ee→KKπ

- ee->K*K->K+K- $\pi^0/K_SK^+\pi^-$
 - Extraction of iso-scalar and iso-vector component
 - Search for possible resonance bellow 2.5 GeV
- ee->Ф(->КК)п⁰/ŋ
 - Motivated by Narrow p-like peak $\Phi(2175)$
- The analysis is ongoing aiming measurement with \sim 400 fb⁻¹ data.
 - The improvement in statistical uncertainty is expected comparing to previous measurement of 232 fb⁻¹

