Exclusive semileptonic decays at Belle II

Philipp Horak¹ on behalf of the Belle II collaboration

¹HEPHY, Austrian Academy of Sciences

CIPANP 2022

August 22, 2022

Semileptonic decays		
0		

Semileptonic decays

- SM precision measurements
 - Semileptonic decays used to measure the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$
- Potential probes of new physics
 - $\bullet ~{\sim} 3\sigma$ discrepancy from SM in measurements of ratios

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})} \ (\ell = \mu, e)$$

	Semileptonic decays ○●		V _{ub} measurements 00000	V _{cb} measurements 0000	
Status	of $ V_{cb} $ and $ V_{cb} $	ub			

- Exclusive: Reconstruct specific final states
 - $\blacksquare B \to D^{(*)} \ell \nu$
 - $\blacksquare \ B \to \pi \ell \nu$
- Theory background: Lattice QCD
- lacksquare \to covered today

- **Inclusive**: Measure general $X\ell\nu$ decay
 - $\blacksquare B \to X_c \ell \nu$
 - $\blacksquare B \to X_u \ell \nu$
- Theory background: HQET
- lacksquare \rightarrow talk by Frank Meier on Saturday
- $\blacksquare \sim \! 3\sigma$ discrepancy between inclusive and exclusive $|V_{cb}|$ and $|V_{ub}|$ measurements

	Belle II		
	0000		

SuperKEKB and Belle II

- SuperKEKB:
 - e^+e^- collider at 10.58 GeV, the $\Upsilon(4S)$ resonance
 - Peak luminosity reached: $4.71 \times 10^{34} (cm^{-2}s^{-1})$, June 22, 2022
 - World record!
 - ~ 100% increase over KEKB (Belle)

Belle II:

- Hermetic detector: important for studying events with missing energy
- Particle identification
 - μ ID superior to Belle
 - e and K ID not at Belle level yet but improving
- \blacksquare high γ detection efficiency

	Belle II		
	0000		

Luminosity

	Belle II		
	0000		

Untagged vs Tagged

- Reconstruct only B_{sig}
- High efficiency, high backgrounds

- B_{sig} and B_{tag} are reconstructed
- Tag can be hadronic or semileptonic
- Precisely determine missing neutrino momentum

	Belle II		
	0000		

Analyses

Featured analyses with 189 fb^{-1}

Exclusive CKM measurements

Analyses covered	$ V_{ub} $	$ V_{cb} $
Untagged	$B ightarrow \pi \ell u$ (ICHEP 2022)	$B ightarrow D\ell u$ (ICHEP 2022)
Tagged	$B ightarrow \pi \ell u$ (Moriond 2022)	$B ightarrow D^* \ell u$ (Moriond 2022)

Branching ratio measurements

• $\mathcal{B}(B \rightarrow \rho \ell \nu)$ (ICHEP 2022)

		V _{ub} measurements ●0000	V _{cb} measurements 0000		
Untagged $ V_{\mu} $	ь			ICHEP 2022	

- Reconstruct $B^0 \to \pi^{\pm} \ell \nu$ with $\ell = (e, \mu)$
- Main challenge: large backgrounds from continuum and other semileptonic decays
- Seperate boosted decision trees to suppress background from continuum and BB events
- Signal extraction via binned 2D fit using ΔE and M_{bc}

	V _{ub} measurements ○●○○○	V _{cb} measurements 0000	
Untagged $ V_{\mu b} $			

- $q^2 = (p_B p_\pi)^2$ is reconstructed using angle between *B* and $\pi \ell$ and Rest of Event information
- Differential branching ratios dependent on $|V_{ub}|$ and q^2

$$rac{d {\cal B}(B o \pi \ell
u)}{dq^2} \propto \left|V_{ub}
ight|^2 imes f_+(q^2) \; .$$

• To extract $|V_{ub}|$ partial branching fractions measured with independent fits in 6 q^2 bins

Post-Fit

	V _{ub} measurements ○○●○○	V _{cb} measurements 0000	
Jntagged $ V_{\mu b} $			

- Combine e and μ spectra in weighted average
- Fit partial branching ratios in 6 bins of q^2 to the BCL expansion to determine $|V_{ub}|$ and the FF parameters b_k
- Lattice QCD constraints (Fermilab/MILC) included as nuisance parameters

 $\mathcal{B}(B^0 o \pi^- \ell^+
u_\ell) = (1.42 \pm 0.06_{stat} \pm 0.13_{sys}) imes 10^{-4}$, PDG: (1.50 \pm 0.06) imes 10⁻⁴

$$V_{ub}| = (3.54 \pm 0.12_{stat} \pm 0.15_{sys} \pm 0.16_{theo}) \times 10^{-3}$$

World-average exclusive: $(3.51 \pm 0.12) \times 10^{-3}$

	V _{ub} measurements 000€0	V _{cb} measurements 0000		
Tagged $ V_{ub} $			Moriond 2022	

- Reconstruct $B^0 \to \pi^{\pm} e \nu_e$ and $B^{\pm} \to \pi^0 e \nu_e$
- Clean q^2 reconstruction thanks to tag: $q^2 = (p_{e^+e^-} - p_{B_{tag}} - p_{\pi})^2$
- Fit $M_{miss}^2 = (p_{e^+e^-} p_{B_{tag}} p_e p_{\pi})^2$ in 3 q^2 bins
- |V_{ub}|/FF fit equivalent to untagged analysis

Tagged measurement of
$$B^0 \to \rho^{\pm} \ell \nu$$
 and $B^{\pm} \to \rho^0 \ell \nu$ with $\rho \to \pi \pi$

- Potential new avenue to measure $|V_{ub}|$ with independent sample
- \blacksquare Previously observed tensions in both ρ^\pm and ρ^0 modes
- Independent measurement of $B \to \pi \pi \ell \nu$ to subtract background
- BDT to suppress continuum background
- 2-dimensional fit in $M_{\pi\pi}$ and M_{miss}^2 to measure branching fractions

$$\begin{split} \mathcal{B}(B^0 \to \rho^- \ell^+ \nu_\ell) &= (4.12 \pm 0.64_{\text{stat}} \pm 1.16_{\text{sys}}) \times 10^{-4}, \\ & \\ \text{PDG: } (2.94 \pm 0.11 \pm 0.18) \times 10^{-4} \\ \mathcal{B}(B^+ \to \rho^0 \ell^+ \nu_\ell) &= (1.77 \pm 0.23_{\text{stat}} \pm 0.36_{\text{sys}}) \times 10^{-4} \\ & \\ \text{PDG: } (1.58 \pm 0.11) \times 10^{-4} \end{split}$$

• Large systematic from $B
ightarrow \pi \pi \ell \nu$ background

- Reconstruct $B^{\pm} \to D^0 \ell \nu$ and $B^0 \to D^{\pm} \ell \nu$ with $\ell = (e, \mu)$ and $D \to K \pi(\pi)$
- Main challenge: large backgrounds from $D^*\ell\nu$
- Signal extraction via 1 dimensional fit of angle between B and $Y(D\ell)$

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

• D^* veto to reduce $B o D^* \ell
u$ candidates

	V _{ub} measurements 00000	V _{cb} measurements ○●○○	
Untagged $ V_{cb} $			

• Differential decay width proportional to V_{cb} and hadronic recoil w

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}w} \left(B \to D\ell\nu_{\ell} \right) = \frac{G_{F}^{2}}{48\pi^{3}} (m_{B} + m_{D})^{2} m_{D}^{3} \eta_{EW} |V_{cb}|^{2} (w^{2} - 1)^{3/2} \mathcal{G}(w)^{2},$$

• with
$$w = \frac{P_B \cdot P_{D^*}}{m_B m_D} = \frac{m_B^2 + m_{D^*} - q^2}{2m_B m_{D^*}}$$
 and form factor $\mathcal{G}(w)$

- Fit form factor differential decay rates in 10 bins of w
- BGL (N=3) parametrization with FNAL/MILC and HPQCD Lattice QCD results

$$|V_{cb}| = (38.3 \pm 1.2) \times 10^{-3}$$

World-average exclusive:
 $(39.10 \pm 0.50) \times 10^{-3}$

- Consistent with the exclusive world average
- $\blacksquare \sim 3\%$ error, comparable to the past measurements

- Tagged measurement of $B o D^* \ell
 u$ with $\ell = (e, \mu)$, $D^* o D\pi_s$ and $D o K\pi$
- \blacksquare High signal purity thanks to tagging and clean signature of $D^*\ell\nu$ mode
- Fit m_{miss}^2 in 10 bins of w

		V _{ub} measurements 00000	V _{cb} measurements 000●	
Taggec	$ V_{cb} $			

Fit CLN parametrized form factor to differential decay rates

$$|V_{cb}| = (37.9 \pm 2.7) \times 10^{-3}$$

World-average exclusive: (39.10 \pm 0.50) \times 10 $^{-3}$

• Major systematic errors: slow π efficiency and tag calibration

Summary

- Improved measurements of |V_{cb}| and |V_{ub}| are essential to increase the constraining power of the Unitarity triangle fit
- First exclusive measurements of $|V_{cb}|$ and $|V_{ub}|$ at Belle II with 189 fb⁻¹
- Results are in agreement with previous results and approaching their precision
- Soon: Untagged $D^* \ell \nu$, first $R(D^*)$ results and many more!
- Related talks:
 - Frank Meier: Belle II results on inclusive $B \rightarrow X \ell \nu$ [HF Saturday 15:30]
 - Koji Hara: LFU measurements in semileptonic $b > c \ell \nu$ decays [HI Saturday 14:30]

Backup		
•0		

Backup

V_{xb} with B mesons