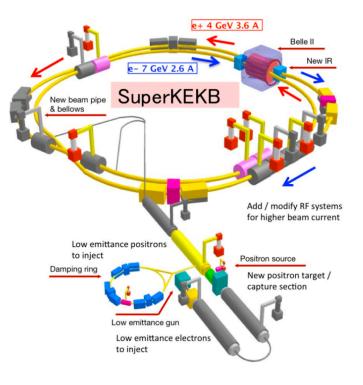

New Results on Beauty, Charm, and Tau from Belle II

Soeren Prell (Iowa State University) 14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022) Orlando, Florida August 29 – September 4, 2022 Belle II


On behalf of the Belle II Collaboration

Belle II & SuperKEKB Accelerator

- Belle II is a multipurpose experiment at the SuperKEKB collider located at KEK (Tsukuba, Japan)
 - Asymmetric-energy e^+ (4 GeV) e^- (7 GeV) collider with E_{CM} near the $\Upsilon(4S)$ resonance (~10.6 GeV)
- Aims to collect a 50 ab^{-1} data sample (50 × Belle)
- Final design instantaneous luminosity of $6.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ (30 × that of KEKB) by
 - reducing beam size by factor 20 ("nano beams")
 - *increasing beam current by factor 1.5*

Belle II Detector

K_L and μ detector: RPC + scintillator w/ SiPM's μID: 1% π/K fake rate at $\varepsilon_{\mu} = 95\%$

EM Calorimeter 8k CsI(Tl) crystals, 16 X₀, waveform sampling *e*ID: 0.01% fake rate at $\varepsilon_e = 95\%$

electrons (7 GeV)

Beryllium beam pipe 2 cm diameter

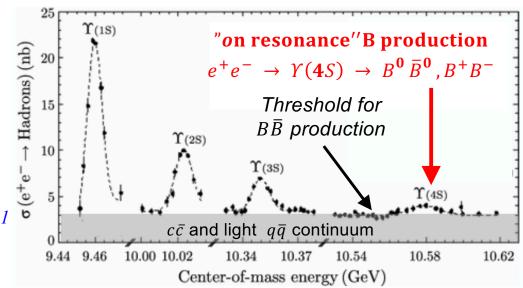
Vertex Detector 2 layers pixels + 4 layers DSSD Vertex resolution ~ 15 μm

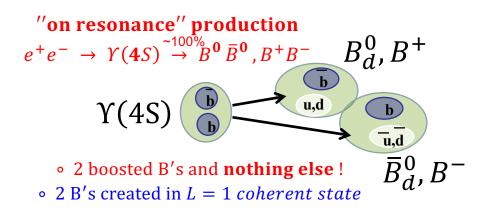
> **Central Drift Chamber** He(50%):C₂H₆(50%), 56 layers p_T resolution ~ 0.4 %

Particle Identification

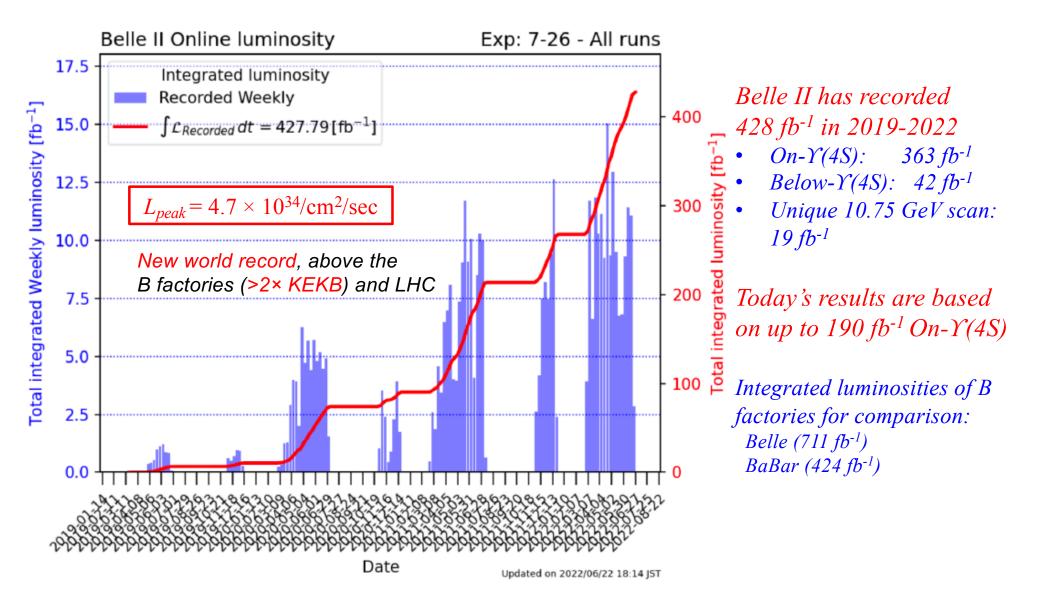
Time-of-propagation counter (barrel), Proximity focusing Aerogel RICH (forward) K/π separation: 1.8% π fake rate at $\varepsilon_{\rm K} = 90\%$

Belle II reuses the structure, solenoid, CsI(TI) crystals, and part of the barrel RPCs from the original Belle detector.

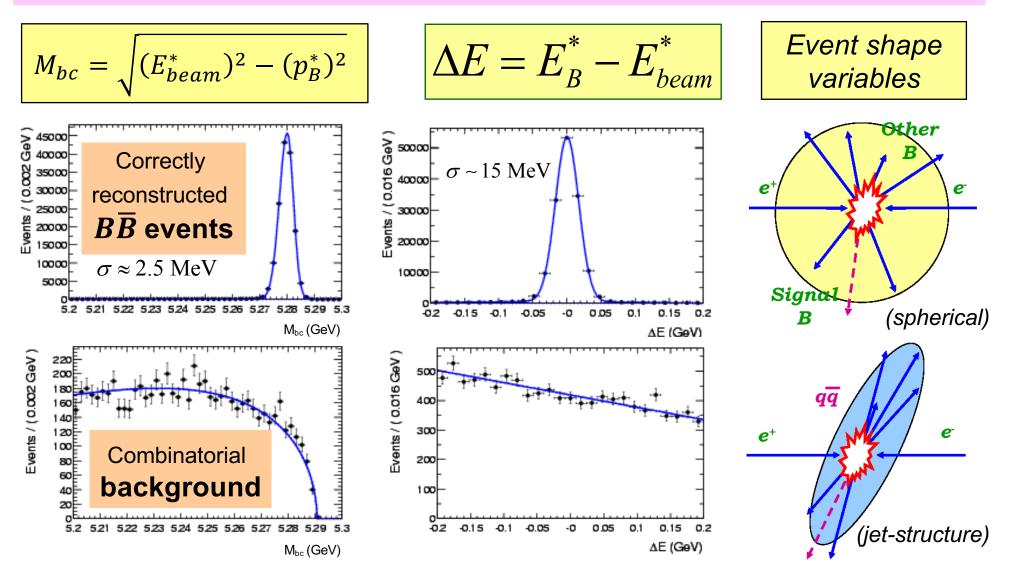

Belle II, a Super Heavy Flavor Factory


Belle II is ...

- a Super **B** Factory: $1.1 \times 10^9 B\overline{B}$ pairs per ab^{-1}
- a Super Charm Factory: $1.3 \times 10^9 \, c \, \overline{c}$ pairs per ab^{-1}
- a Super τ Factory: $0.9 \times 10^9 \tau^+ \tau^-$ pairs per ab^{-1}

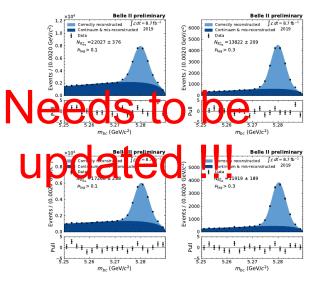

... and in addition, the clean e+e- environment allows the study/search of

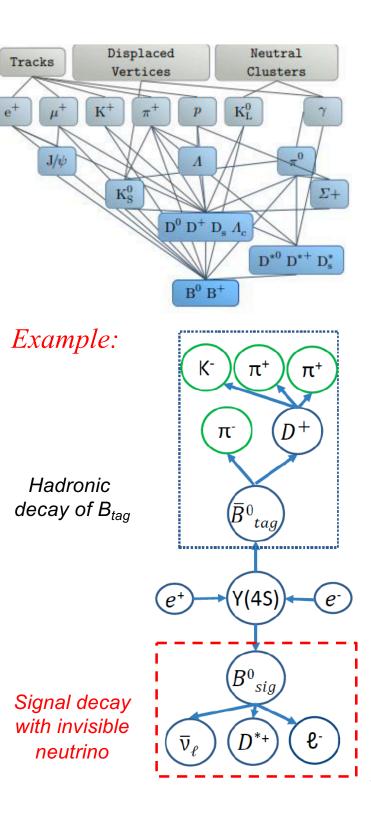
- Charmonium & bottomonium (SM & exotic X,Y,Z)
- Tetra- and penta-quarks
- Dark particles (dark y/Higgs, ALPs, LLPs), ...


Belle II Luminosity

Many Belle II results are starting to become statistically competitive, some measurements are already world's best !

B Meson Reconstruction Techniques

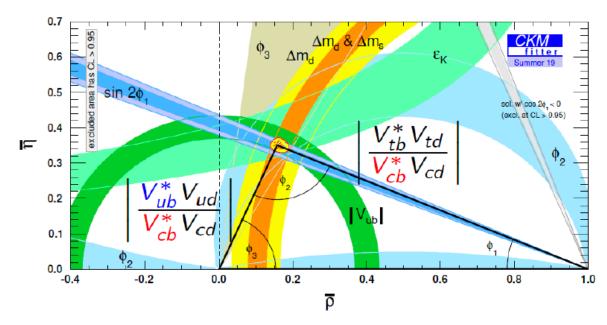

Exploit kinematics of $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ for signal selection



Full Event Interpretation

Comput. Softw. Big Sci. 3, 6 (2019)

- Reconstruct one $B(B_{tag})$ fully with a multivariate classifier
 - Sample dominated by large-BF, lowbackground final states
- Properties of B_{sig} (e.g. momentum) and invisible daughters (e.g. "missing mass") can be calculated with B_{tag} momentum
- Typical for values hadronic B_{tag} : $\mathcal{E}(B_{tag}) \sim 0.XX\%$, purity $\sim XX\%$

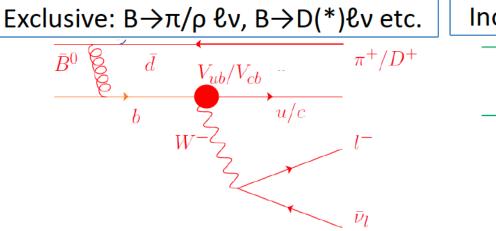


Measurements of quark mixing parameters

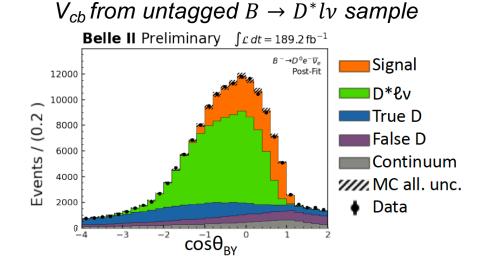
Amplitude for charged current quark transition $q_i \rightarrow W q_j$ is proportional to CKM matrix element V_{ij}

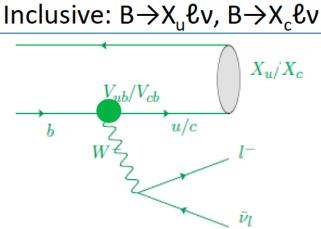
- BFs ($\propto |V_{ij}|^2$) \rightarrow magnitudes
- *CP* asymmetries (arising from interference of 2 amplitudes) \rightarrow (complex) phases

In the SM, V_{CKM} is a unitary 3×3 matrix: measurements of Unitarity Triangle sides and angles must be consistent !!!


$$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Belle II can measure magnitudes of 7 of the 9 matrix elements and weak phase

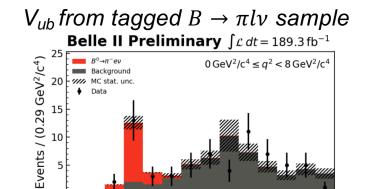

$$V^{*}_{ub}V_{ud} + V^{*}_{cb}V_{cd} + V^{*}_{tb}V_{td} \; = \; 0$$


$$\phi_1 = \beta \equiv \arg \left[-V_{cd} V_{cb}^* / V_{td} V_{tb}^* \right]$$

$$\phi_2 = \alpha \equiv \arg \left[-V_{td} V_{tb}^* / V_{ud} V_{ub}^* \right]$$

$$\phi_3 = \gamma \equiv \arg \left[-V_{ud} V_{ub}^* / V_{cd} V_{cb}^* \right]$$

V_{ub} and V_{cb}



Parameter	Exclusive	Inclusive
V _{cb} × 10 ⁻³	39.10 ± 0.50	42.19 ± 0.78
$ V_{ub} \times 10^{-3}$	3.51 ± 0.12	4.19 ± 0.12

HFLAV, <u>arXiv:2206.07501</u> discrepancy between inclusive and exclusive

Data – MC $\sigma_{
m stat}$

-5

-1.0

-0.5

0.0

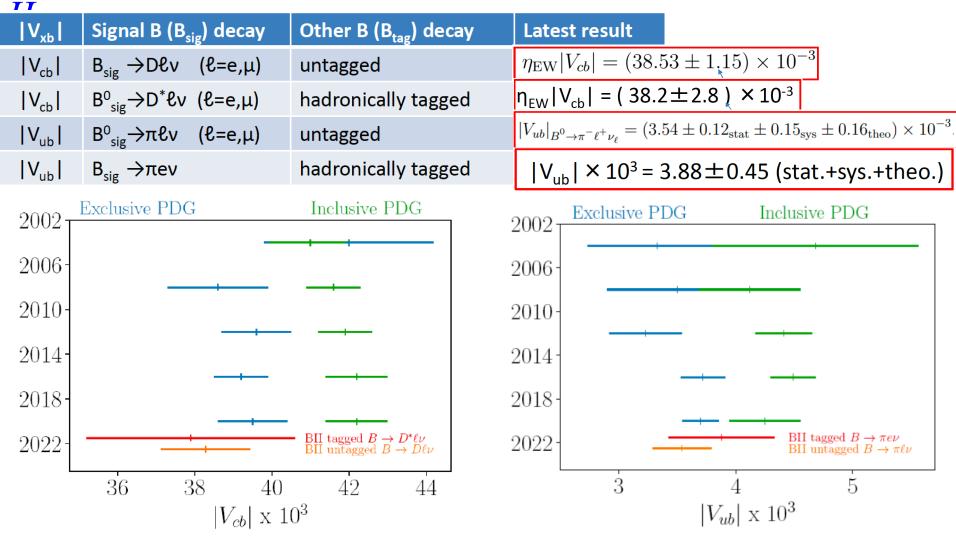
0.5

1.0

 $M_{\rm miss}^2$ [GeV²/c⁴]

1.5

2.0


2.5

3.0

Horak, HF

Tue 17:00

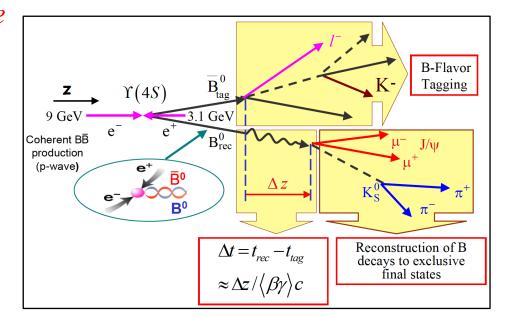
4 new excl. Vxb results from Belle

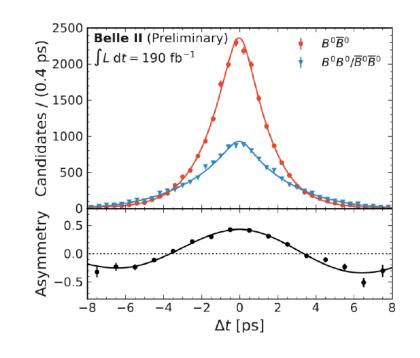
Belle II V_{xb} results are consistent with previous measurements, with precision approaching those of prev. results

Discrepancy between excl. and incl. may be due to unaccounted non-perturbative effects. Measurements of SL decay kinematics (Belle II, arxiv.org:2205.06372) may help resolve the issue.

Time-dependent asymmetries in B decays

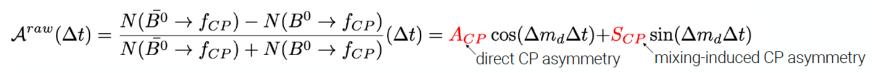
- TD measurements of B decays were pioneered by BABAR and Belle


 Need good B flavor tagging and Δt = t_{Sig} - t_{tag} measurement
- *BB mixing asymmetry*


 $\mathcal{A}(\Delta t) = \frac{N_{B\bar{B}} - N_{BB,\bar{B}\bar{B}}}{N_{B\bar{B}} + N_{BB,\bar{B}\bar{B}}} = \cos(\Delta m_d \Delta t)(1 - 2w) \otimes R(\Delta t)$

• New Belle II measurements of B lifetime and mixing frequency

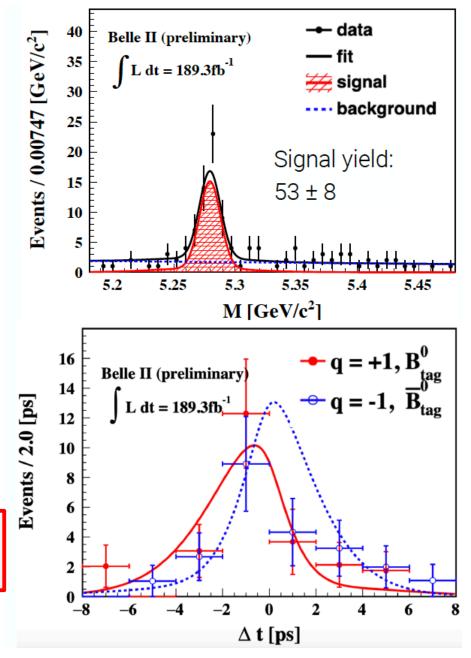
 $\tau_{B^0} = 1.499 \pm 0.013 \pm 0.008 \text{ ps}$ $\Delta m_d = 0.516 \pm 0.008 \pm 0.005 \text{ ps}^{-1}$


- Measurements consistent with WAs
- O(1%) precision in $\tau(B^0)$ and Δm_d demonstrate Belle II's excellent flavor tagging and vertexing performance

Measurement of CP asymmetry $\sin 2\phi_1$

Zlebcik, HF Tue 13:30

- Expect $S_{CP} = \sin 2\phi_1$ for tree amplitude $b \rightarrow c\bar{c}s$ decays
- New physics could provide CP contribution in penguin decays


12

 $\Delta t [ps]$

Time-dependent CPV in B penguins

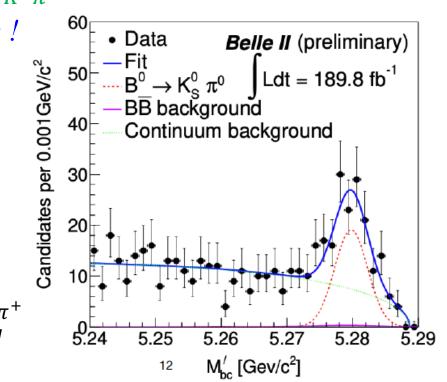
- Measure S_{CP} in penguin decay $B \rightarrow 3K_S^0$
 - Technically complicated measurement with no tracks from B_{sig} decay vertex
 - Small inner radius of PXD ensures most K_S^0 daughter tracks have pixel hit info
- *Result consistent with SM predictions:*
 - $A_{CP} \sim 0$ and $S_{CP} \sim -\sin 2\phi_1$

$$S_{CP} = -1.86^{+0.91}_{-0.46} \text{ (stat)} \pm 0.09 \text{ (syst)}$$

$$A_{CP} = -0.22^{+0.30}_{-0.27} \text{ (stat)} \pm 0.04 \text{ (syst)}$$

$K\pi$ Puzzle

- Unexpected large difference between CP asymmetries $A_{K^+\pi^-}^{CP}$ and $A_{K^+\pi^0}^{CP}$ in $B \to K\pi$ decays dominated by hadronic penguin amplitudes
- Isospin sum rule tests if discrepancy from sub-leading SM amplitudes


$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}}^{\mathsf{CP}} + \mathcal{A}_{K^{0}\pi^{+}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \approx 0$$

- Current precision (XX%) limited by $A_{K^0\pi^0}^{CP}$.
- Only Belle II can measure all of these !

New Belle II measurements:

 $A_{CP}^{K^{+}\pi^{0}} = 0.014 \pm 0.047 \pm 0.010$ $B_{K^{+}\pi^{0}} = (14.30 \pm 0.69 \pm 0.79) \times 10^{-6}$ $A_{CP}^{K^{0}\pi^{0}} = -0.41_{-0.32}^{+0.30} \pm 0.09$ $B_{K^{0}\pi^{0}} = (11.0 \pm 1.2 \pm 1.0) \times 10^{-6}$

Previous Belle II results with 63 fb⁻¹: $K^+\pi^-$ and $K^0\pi^+$ (arXiv:2106.03766), $K^0\pi^0$ (arXiv:2104.14871), and $K^+\pi^0$ (arXiv:2105.04111),

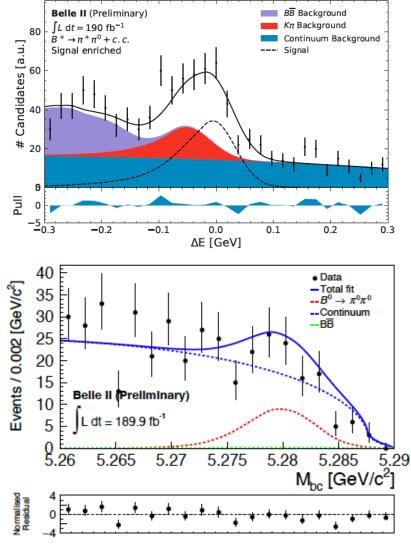
Measurement of ϕ_2 *from* $B \rightarrow \pi\pi$ *and* $B \rightarrow \rho\rho$

CKM angle ϕ_2 accessible through measurements of BFs and CP asymmetries in set of $b \rightarrow u$ dominated $B \rightarrow \pi\pi$ and $B \rightarrow \rho\rho$ decays

 Isospin decomposition is necessary to account for penguin pollution

 $\begin{array}{l} \mathbf{B}^{+} \rightarrow \rho^{+} \rho^{0}, \ \mathbf{B}^{0} \rightarrow \rho^{0} \rho^{0}, \ \mathbf{B}^{0} \rightarrow \rho^{+} \rho^{-} \text{ or } \\ \mathbf{B}^{0} \rightarrow \pi^{+} \pi^{-}, \ \mathbf{B}^{+} \rightarrow \pi^{+} \pi^{0}, \ \mathbf{B}^{0} \rightarrow \pi^{0} \pi^{0} \end{array}$

New Belle II $B \rightarrow \pi\pi$ measurements:


$$A_{CP}^{\pi^{+}\pi^{0}} = -0.085 \pm 0.085 \pm 0.019$$

$$B_{\pi^{+}\pi^{0}} = (6.12 \pm 0.53 \pm 0.53) \times 10^{-6}$$

$$A_{CP}^{\pi^{0}\pi^{0}} = 0.14 \pm 0.46 \pm 0.07$$

$$B_{\pi^{0}\pi^{0}} = (1.27 \pm 0.25 \pm 0.17) \times 10^{-6}$$

WA:
$$A_{CP}^{\pi^0\pi^0} = 0.33 \pm 0.22, B_{\pi^0\pi^0} = (1.59 \pm 0.26) \times 10^{-6}$$

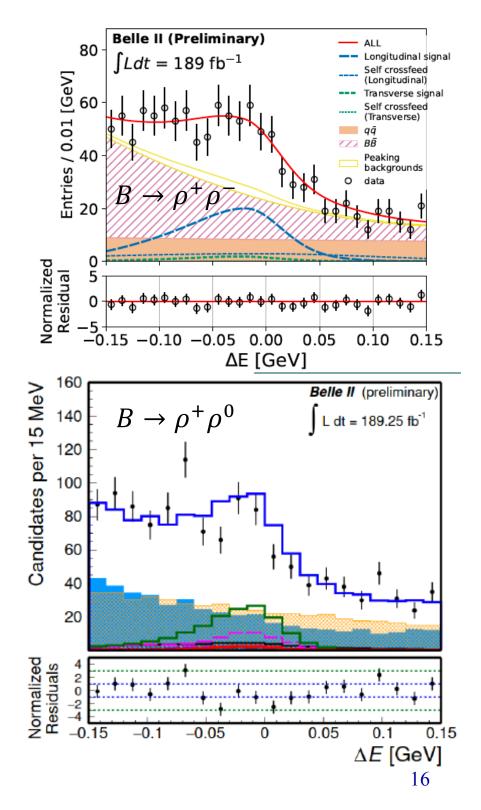
Although $\rho\rho$ is a VV final state, similar isospin analysis as in $\pi\pi$ possible since only longitudinal amplitude dominant

New Belle II $B \rightarrow \rho \rho$ measurements:

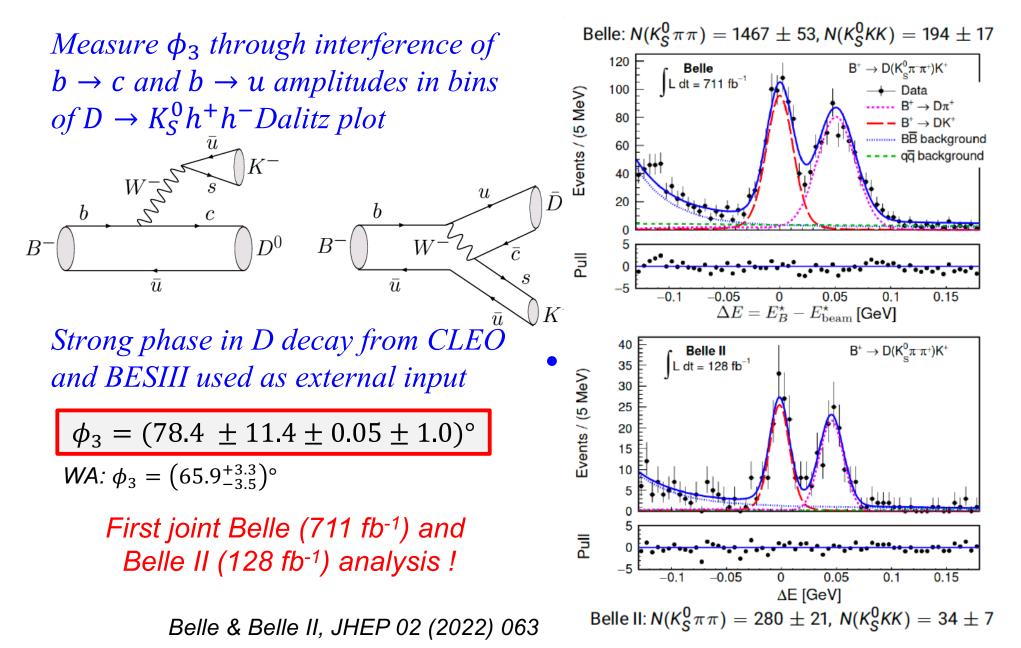
$$B_{\rho^+\rho^-} = (26.7 \pm 2.8 \pm 2.8) \times 10^{-6}$$

$$f_L^{\rho^+\rho^-} = 0.956 \pm 0.035 \pm 0.033$$

WA: $B_{\rho^+\rho^-} = (27.7 \pm 1.9) \times 10^{-6}$

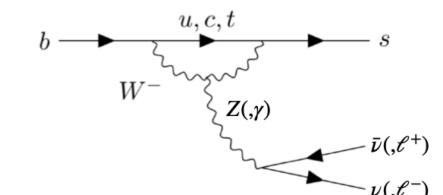

$$A_{CP}^{\rho^+\rho^0} = -0.069 \pm 0.068 \pm 0.060$$

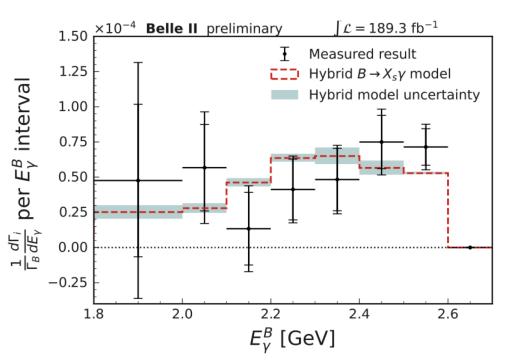
$$B_{\rho^+\rho^0} = (23.2^{+2.2}_{-2.1} \pm 2.7) \times 10^{-6}$$


$$f_L^{\rho^+\rho^0} = 0.943^{+0.035}_{-0.033} \pm 0.027$$

WA:
$$A_{CP}^{\rho^+\rho^0} = -0.05 \pm 0.05, B_{\rho^+\rho^0} = (24.0 \pm 1.9) \times 10^{-6}$$

Previous Belle II results with 63 fb⁻¹: $\pi^+\pi^-$ (arXiv:2106.03766), $\pi^0\pi^0$ (arXiv:2107.02373), and $\rho^+\rho^0$ (arXiv:2206.12362),

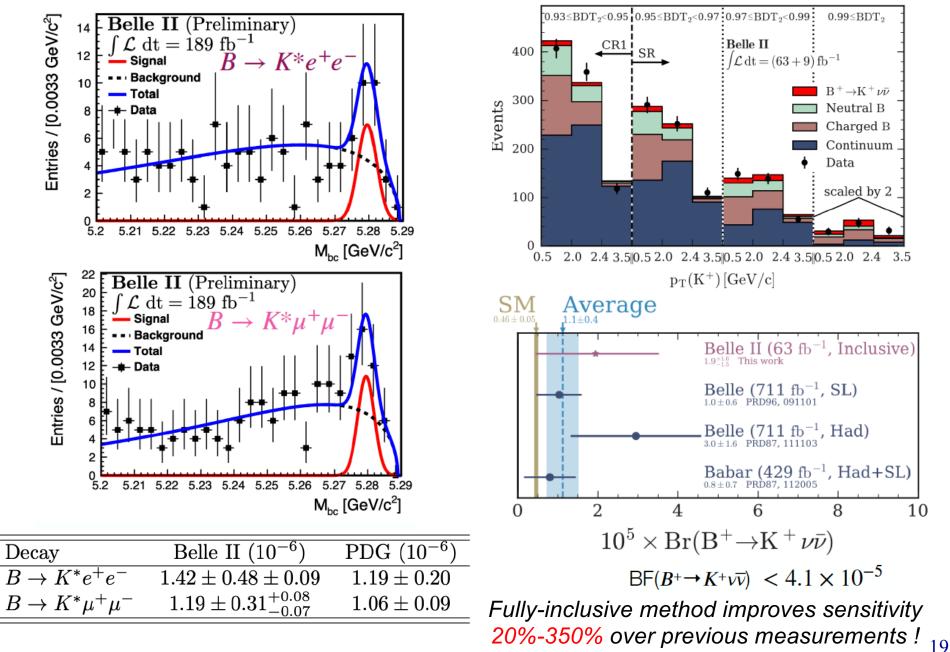

Measurement of ϕ_3 with $B^{\pm} \rightarrow D(K_S^0 h^+ h^-) K^{\pm}$



Radiative and EW Penguin B Decays

- Flavor-changing neutral currents: in SM due to b → s transitions at one-loop level
 - Sensitive to New Physics particles in the loop
- *BF ratios, asymmetries and angular observables can be precisely predicted in SM*
- New Belle II incl. $BR(b \rightarrow s \gamma)$ measurement
 - Apply cut-off due to large background at low $E(\gamma)$

E_{γ}^{B} threshold, GeV	${\cal B}(B o X_s \gamma)(10^{-4})$
1.8	3.54 ± 0.78 (stat.) ± 0.83 (syst.)
2.0	$3.06\pm0.56~(\mathrm{stat.})~\pm0.47~(\mathrm{syst.})$



SM prediction for E_{γ}^{B} > 1.6 GeV: (3.40 ± 0.17)×10⁻⁴ [JHEPO6(2020)175]

$B \to K^* l^+ l^- and B \to K \nu \bar{\nu}$

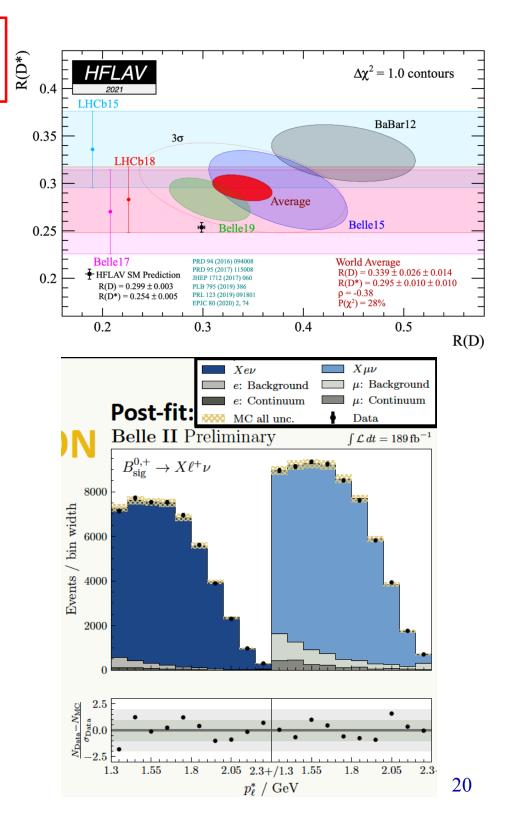
New measurements of $BR(B \to K^*l^+l^-)$ and $BR(B \to K\nu\bar{\nu})$ (fully-incl.)

 $LFU in B \rightarrow D^{(*)} l\nu$

• Tensions observed recently in excl. semi-leptonic BF ratios $R(D^{(*)}) =$ $BR(B \rightarrow D^{(*)} lv)/BR(B \rightarrow D^{(*)} \tau v)$

Meier. HF

Sat 15:30 &

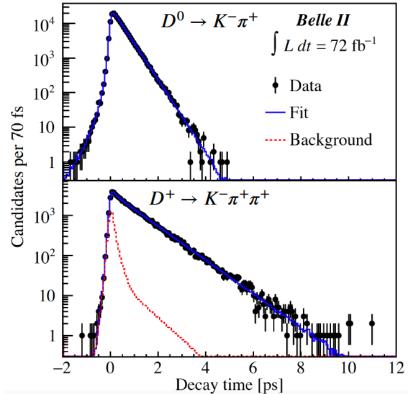

Hara, HI

Sat 14:00

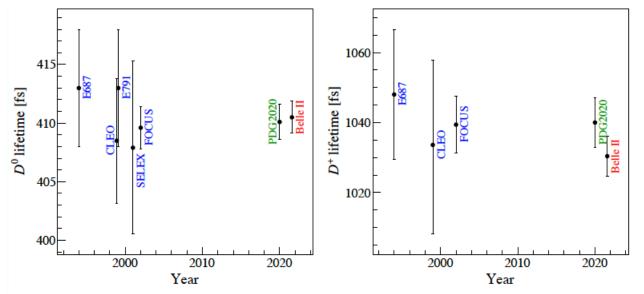
- Predictions for incl. R(X): $R(X_{c,\tau/l})_{SM} = 0.223 \pm 0.004$ PRD 92 (2015) 054018 $R(X_{c,e/\mu})_{SM} = 1.006 \pm 0.001$ Vos & Rahimi, in progress
- Since incl. measurements are hard, esp. with τ , measure $R(X_{e/\mu})$ first

 $R(X_{c,e/\mu}) = 1.003 \pm 0.010 \pm 0.020$

Most precise LFU test with semi-leptonic B decays to date !


Charm meson lifetimes

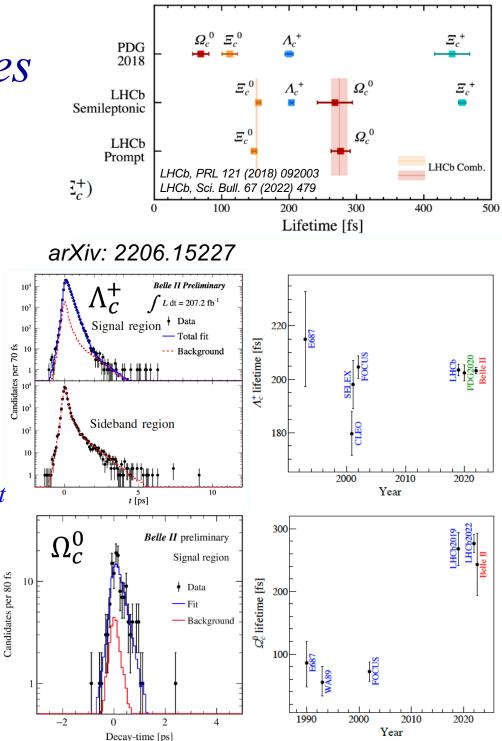
 First D⁰ and D⁺ lifetime measurements in 2 decades


Belle II, PRL 127 (2021) 021801

 $\tau(D^0) = 410.5 \pm 1.1 \text{ (stat)} \pm 0.8 \text{ (syst) fs}$ $\tau(D^+) = 1030.4 \pm 4.7 \text{ (stat)} \pm 3.1 \text{ (syst) fs}$

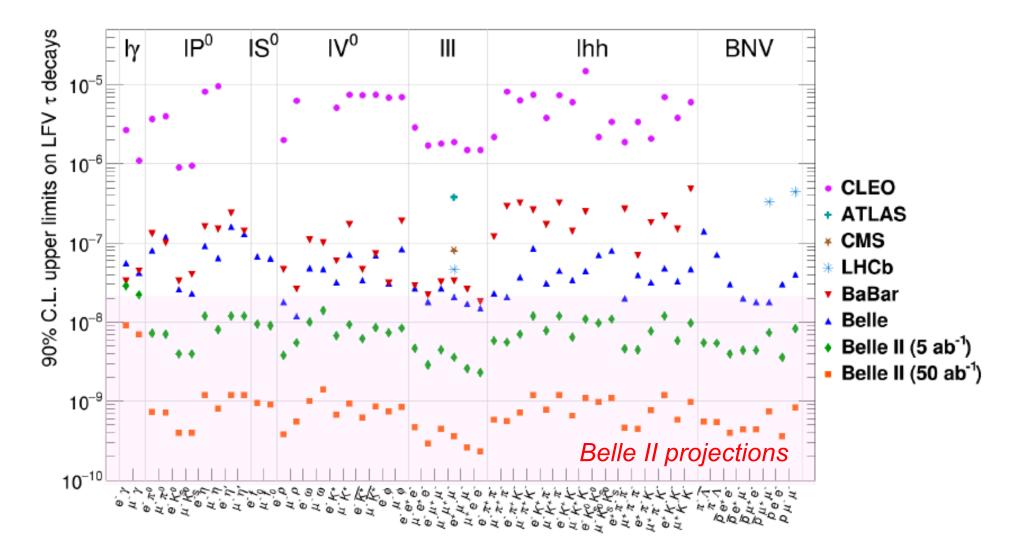
• Belle II results are more precise than and consistent with previous measurements

0.5% precision (incl. syst.) demonstrates excellent performance and understanding of Belle II vertex detector

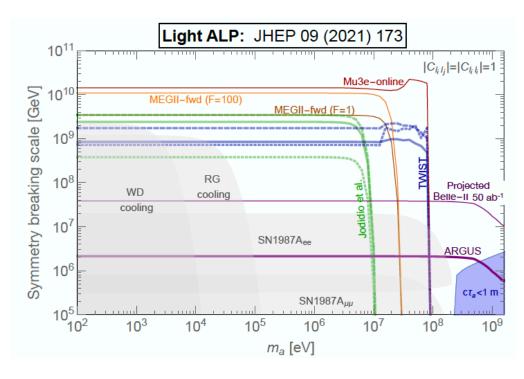


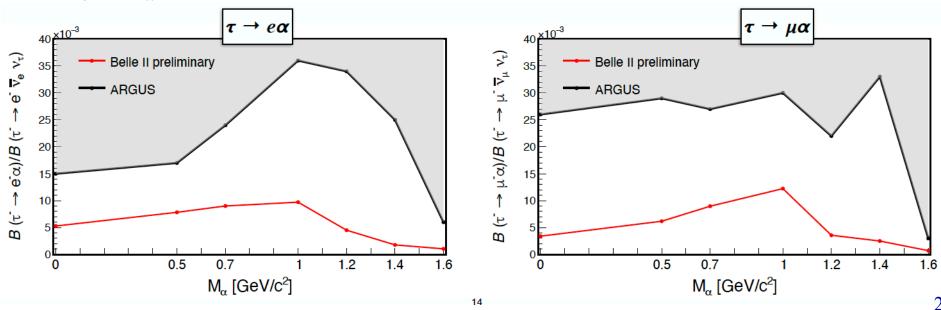
Charm baryon lifetimes

- Recent LHCb Λ_c^+ and Ξ_c^0 lifetime measurements changed order of charm baryon lifetimes
- New Belle II results:


```
\tau(\Lambda_c^+)
= 203.2 ± 0.9 (stat) ± 0.8 (syst) fs
\tau(\Omega_c^0)
= 243 ± 48 (stat) ± 11 (syst) fs
```

- Most precise Λ_c^+ lifetime measurement
- Confirms that Ω_c^0 is not shortestlived singly-charmed baryon
 - Consistent with LHCb results
 - Inconsistent with pre-LHCb world average by 3.4sigma

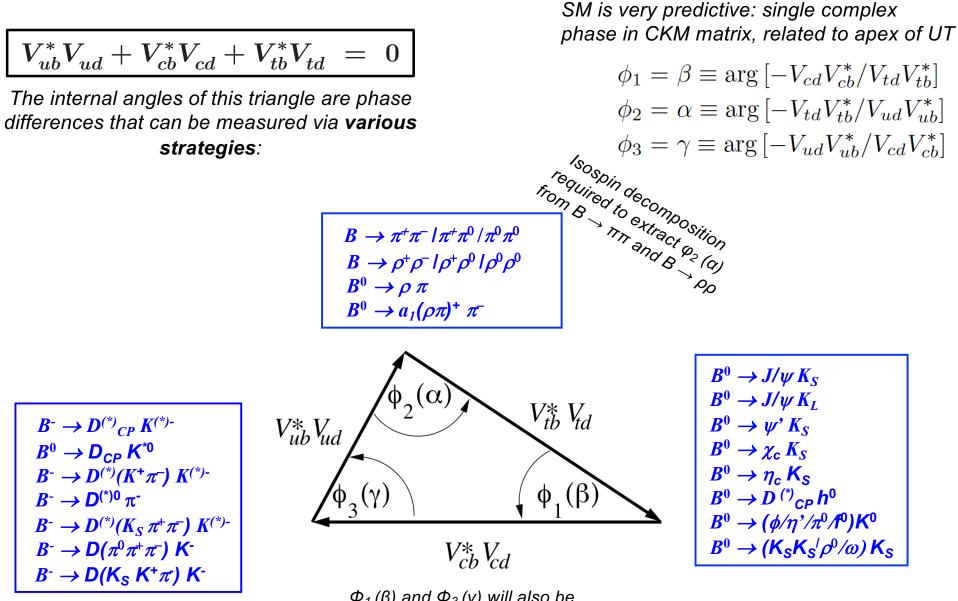

LFV searches in τ decays


Many new physics models predict cLVF at 10⁻⁷-10⁻¹⁰

$\tau \rightarrow e/\mu + \alpha \ (invisible)$

- Invisble particle occur in NP models such as light ALP
- Previous best upper limits for $0.1 < M_{\alpha} < 1.6 \text{ GeV from}$ ARGUS (add ref)
- Compare $\tau \rightarrow e/\mu + invisible$ rate with $\tau \rightarrow e/\mu \, v \bar{v}$ prediction
 - Improved limits set for $BR(\tau \rightarrow e/\mu + \alpha)/BR(\tau \rightarrow e/\mu \nu \overline{\nu})$ for $M_{\alpha} < 1.6 \text{ GeV}$

Conclusions

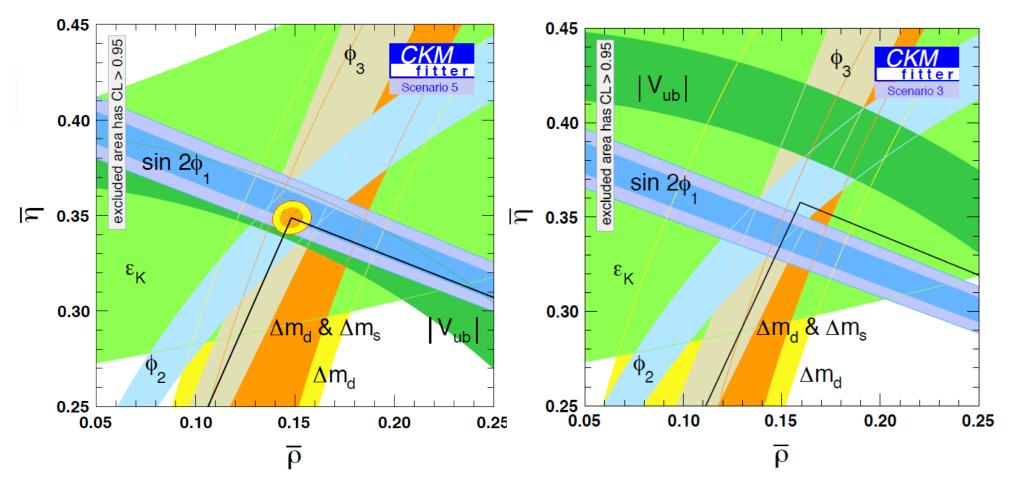

- SuperKEKB is delivering e⁺e⁻ collision data at worldrecord luminosity
 - *Expect to improve a factor of 6 before LS2*
- Belle II detector demonstrates excellent performance
 E.g. in incl. reco., neutrals (γ, π⁰) & vertex measurements
- Belle II is a Super Flavor Factory, already producing many results with first 190 fb⁻¹ (of 424 fb⁻¹ recorded)
 - New B, Charm, and τ physics results are at precisions comparable to those of BABAR and Belle
 - Similarly, many new and unique results on dark sector searches & heavy quarkonium (not covered in this talk)

Back-Up Slides

Big Questions and Belle II's avenues to address them

- Are there **new CP-violating phases** in the quark sector ? SM CPV cannot explain baryon-antibaryon asymmetry.
 - CPV in B loop decays and charm
- Does nature have *multiple Higgs bosons* ?
 - Flavor transitions involving the tau lepton $(B \rightarrow \tau v \& B \rightarrow D^{(*)} \tau v)$
- Does nature have a *left-right symmetry*, and are there flavor changing neutral currents beyond the SM ?
 - CPV in $B \to K^{*0}(K_s \pi^0) \gamma$; $B \to K^{(*)}vv$, angular variables in $b \to s, d l^+ l^-$
- Are there sources of **lepton flavor violation** ?
 - LFV τ decays
- Is there a **dark sector** of particle physics at the same mass scale as ordinary matter ?
 - Search for MeV GeV dark matter particles
- What is the **nature of the strong force** in binding hadrons?
 - In-depth study of recently discovered new states and search for new ones

SM CPV: CKM and Unitarity Triangle

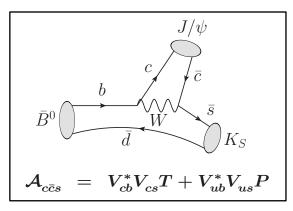


 $\Phi_1(\beta)$ and $\Phi_3(\gamma)$ will also be precisely measured by LHCb

Overconstraining the Unitarity Triangle

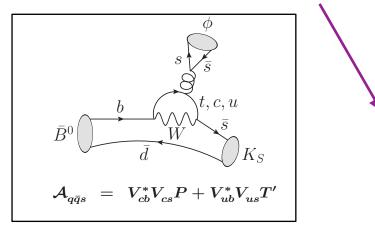
SM CPV too small to explain baryon-antibaryon asymmetry. Are there new CP violating phases in the quark sector?

 \Rightarrow Belle II will measure all 3 Unitarity Triangle angles ($sin2\phi_1, \phi_2, \phi_3$)

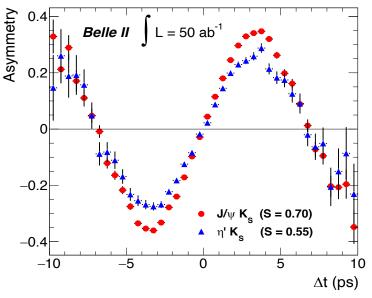


In ten years: no-tension SM ... or observation of New Physics ?

Measurements of ϕ_1 (β)


 $B^0 \rightarrow J/\psi K_S$ (the "Golden" mode):

 \rightarrow constrains the UT



expected 50 ab^{-1} uncertainty: $\delta\phi_1 = 0.4^{\circ}$ (less than the current theory error of 1-2°)

$B^0 \rightarrow \phi K_S, \eta' K_S, \omega K_S, \pi^0 K_S$ ("penguin" modes):

Use time-dependent CPV measurement techniques pioneered by Belle & BABAR (boosted L=1 BB system, vertexing/ Δt with 2x better Δt resolution than Belle from pixel detector, and excellent B flavor tagging Q > 30%)

$$A_{CP} = A\cos(\Delta M \Delta t) + S\sin(\Delta M \Delta t)$$

	WA (2017)		5 ab^{-1}		$50 {\rm ~ab^{-1}}$	
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	0.0090
ϕK^0	0.12	0.14	0.048	0.035	0.020	0.011
$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	0.008
ωK_S^0	0.21	0.14	0.08	0.06	0.024	0.020
$K^0_S \pi^0 \gamma$	0.20	0.12	0.10	0.07	0.031	0.021
$K^0_S \pi^0$	0.17	0.10	0.09	0.06	0.028	0.018

Tree and penguin modes have same SM weak phase, but NP contributions in loop could contribute additional phases (**improve from 10-20% precision to 2-3%**)

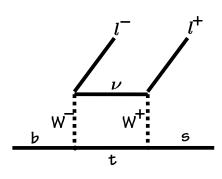
Measurements of $\phi_2(\alpha)$ and $\phi_3(\gamma)$

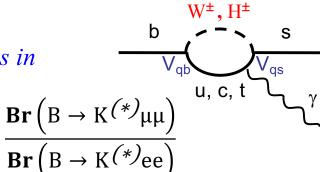
Measurement of φ_2 in $B \rightarrow \pi \pi$, 3π , $\rho \rho$

 ϕ_2 is determined from CP asymmetries and BFs of B $\rightarrow \pi\pi$, B $\rightarrow 3\pi$, and B $\rightarrow \rho\rho$ decays with an **isospin decomposition** of B⁺ and B⁰ decays **involving final states with** π^{0} 's

- Belle II has good π^0 efficiency
- Expt. errors reduced by 2× 10× depending on systematic error source
- Improved measurement of A(B $\rightarrow \pi^0 \pi^0$) will reduce discrete ambiguities
- Expect error in φ₂ with 50/ab to be 0.6° (now 4.2°)

	Value	0.8 ab^{-1}	$50 {\rm ~ab^{-1}}$
$f_{L, ho^+ ho^-}$	0.988	$\pm 0.012 \pm 0.023$ [725]	$\pm 0.002 \pm 0.003$
$f_{L, ho^0 ho^0}$	0.21	$\pm 0.20 \pm 0.15$ [729]	$\pm 0.03 \pm 0.02$
${\cal B}_{ ho^+ ho^-}$ [10-6]	28.3	$\pm 1.5 \pm 1.5$ [725]	$\pm 0.19 \pm 0.4$
${\cal B}_{ ho^0 ho^0}$ [10 ⁻⁶]	1.02	$\pm 0.30 \pm 0.15$ [729]	$\pm 0.04 \pm 0.02$
$A_{ ho^+ ho^-}$	0.00	$\pm 0.10 \pm 0.06$ [725]	$\pm 0.01 \pm 0.01$
$S_{ ho^+ ho^-}$	-0.13	$\pm 0.15 \pm 0.05$ [725]	$\pm 0.02 \pm 0.01$
	Value	0.08 ab^{-1}	$50 { m ~ab^{-1}}$
$f_{L, ho^+ ho^0}$	0.95	$\pm 0.11 \pm 0.02$ [716]	$\pm 0.004\pm 0.003$
${\cal B}_{ ho^+ ho^0}$ [10 ⁻⁶]	31.7	$\pm 7.1 \pm 5.3$ [716]	$\pm 0.3 \pm 0.5$
	Value	0.5 ab^{-1}	$50 { m ~ab^{-1}}$
$A_{ ho^0 ho^0}$	-0.2	$\pm 0.8 \pm 0.3$ [715]	$\pm 0.08 \pm 0.01$
$S_{ ho^0 ho^0}$	0.3	$\pm 0.7 \pm 0.2$ [715]	$\pm 0.07 \pm 0.01$

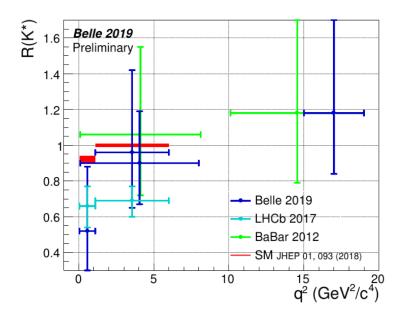

Precision measurement of ϕ_{β} in $B \rightarrow D^{(*)}K^{(*)}$


- Reconstruct D decays to CP eigenstates, Cabibbo-favored and singly and doubly Cabibbo-suppressed decays and self-conjugate modes
- Expect ϕ_3 error from GGSZ with 50/ab and strong phase measurement from BESIII to be 1.5° (WA 5°)

Type of D decay	Method name	D final states studied
CP-eigenstates	GLW	CP -even: K^+K^- , $\pi^+\pi^-$; CP -odd $K^0_S\pi^0$, $K^0_S\eta$
CF and DCS	ADS	$K^{\pm}\pi^{\mp}, K^{\pm}\pi^{\mp}\pi^{0}, (K^{\pm}\pi^{\mp}\pi^{+}\pi^{-})$
Self-conjugate	GGSZ	$K_S^0 \pi^+ \pi^-, (K_S^0 K^+ K^-), (\pi^+ \pi^- \pi^0), (K^+ K^- \pi^0),$
		$(\pi^+\pi^-\pi^+\pi^-)$
SCS	GLS	$(K^0_S K^{\pm} \pi^{\mp})$

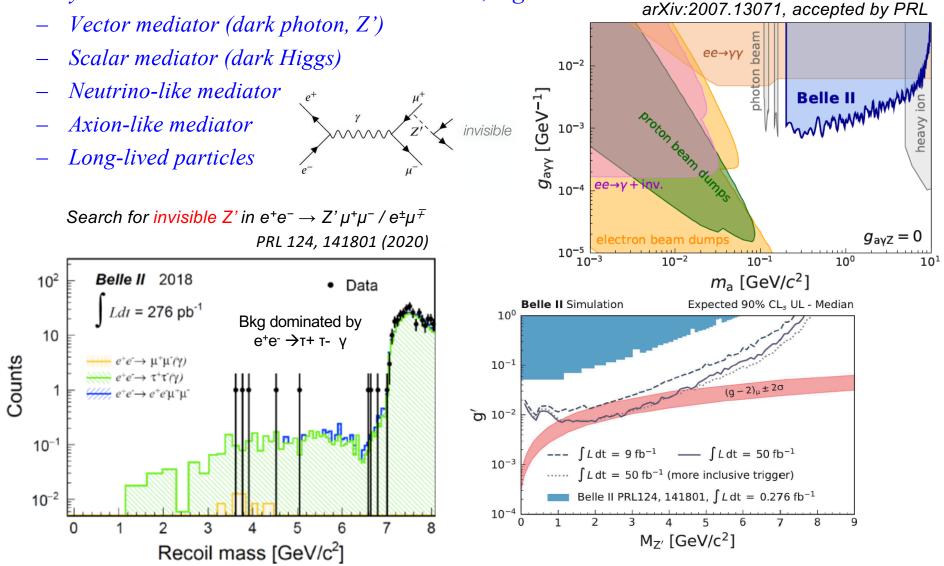
Rare radiative and EW Penguin B Decays

- Sensitive to NP contributing in the loop
- Belle II is uniquely sensitive to
 - *inclusive final states* $B \rightarrow X_{s,d} \gamma$ and $B \rightarrow X_{s,d} l^+ l^-$
 - final states with **photons**, neutrinos, or taus
 - ... and has **nearly equal μ and e efficiency** for LFU tests
 - B_{tag} reconstruction (FEI) improved $\times 2$ wrt Belle
- Measure BF, A_{CP} , A_{FB} , ΔA_{CP} , Δ_{0+} , and angular variables in incl. and excl. $B \rightarrow X_{s,d} \gamma$ and $B \rightarrow X_{s,d} l^+ l^-$ final states
- Determine R_K and R_{K*} with 3-4 % precision
- Expect Belle II to observe $B \to K^{(*)}vv$



SM prediction very robust: $R_K(SM) = 1$

 $R_{K(*)}$


[up to tiny QED *and* lepton mass effects]

Observables	Belle		Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}	
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu})$	$<40 imes10^{-6}$	25%	9%	
$\mathcal{B}(B \to K^+ \nu \overline{\nu})$	$< 19 imes 10^{-6}$	30%	11%	
$A_{CP}(B \to X_{s+d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1.5	0.5	
$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035	
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07	
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 3.5 \ { m GeV}^2/c^4)$	26%	10%	3%	
$Br(B \rightarrow K^+ \mu^+ \mu^-)/Br(B \rightarrow K^+ e^+ e^-)$	28%	11%	4%	
$(1 < q^2 < 6 \text{ GeV}^2/c^4)$				
$Br(B \to K^{*+}(892)\mu^+\mu^-)/Br(B \to$	24%	9%	3%	
$K^{*+}(892)e^+e^-) \ (1 < q^2 < 6 \ \text{GeV}^2/c^4)$				
$\mathcal{B}(B_s \to \gamma \gamma)$	$< 8.7 imes 10^{-6}$	23%	_	
$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	< 0.8	_	

Dark Sector Searches

- DS searches at Belle II benefit from large data sample, clean e⁺e⁻ environment, and special high-efficiency triggers for low-multiplicity final states
- Many **DS benchmark models** will be studied, e.g.

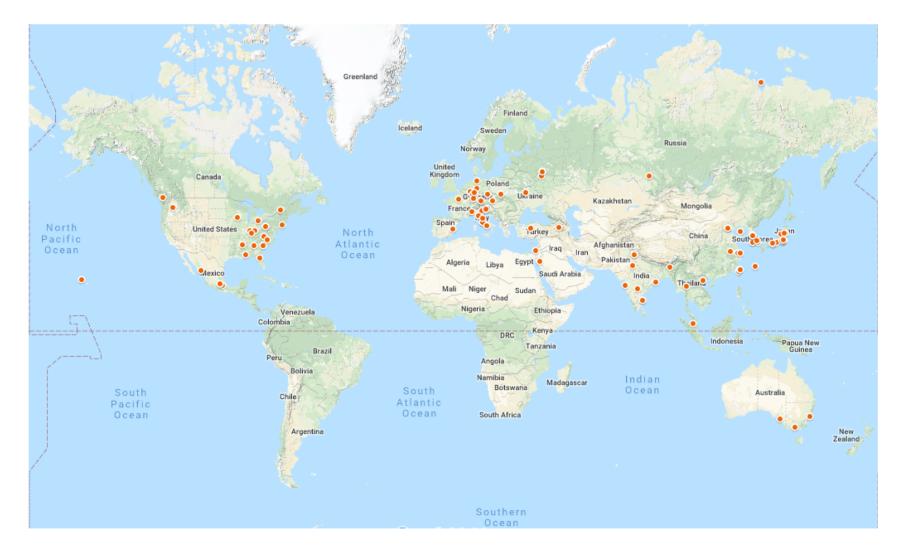
Search for ALP in $e^+e^- \rightarrow a(\gamma\gamma)\gamma$

Outline 1

- SuperKEKB & Belle II detector
 - B factories legacy
 - Luminosity records and planned profile
 - Strength wrt LHCb (inclusive, neutrals & invisibles)
 - Heavy Flavor factory (B, charm, tau)

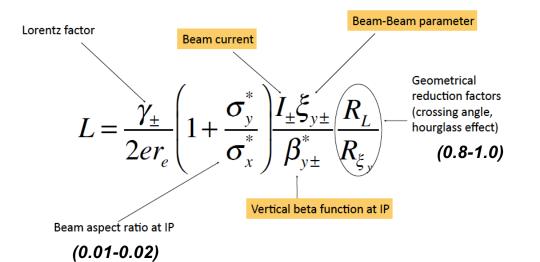
Outline 2

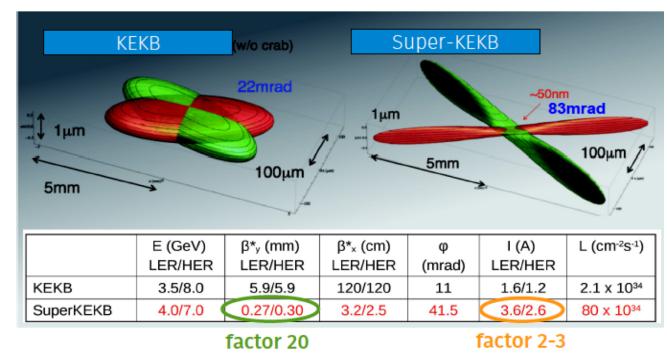
- B Results
 - Vcb and Vub from B -> D(*) l nu and B -> pi l nu (see Koga, ICHEP talk)
 - Measurement of Moments of the q2 Spectrum in B -> Xc l nu Decays, subm. to PRD (2205.06372), old ?
 - B lifetime and mixing, sin(2phi1) with J/psi KS, 3KS, K0S pi0 (see La Licata ICHEP talk)
 - Kpi puzzle, alpha from pipi and rho pi, Gamma (Belle + Belle II) (see Skorupa ICHEP talk)
 - B -> Xs gamma, BR(B->K*II), B -> J/psi K (see Ganiev ICHEP talk)
 - Studies of B+ -> K+ nu nubar decay using an inclusive tagging method at Belle II, Phys Rev Lett 127, 181802 (2021)
 - $\mathbf{R}(\mathbf{X})_{e/mu}$


Outline 3

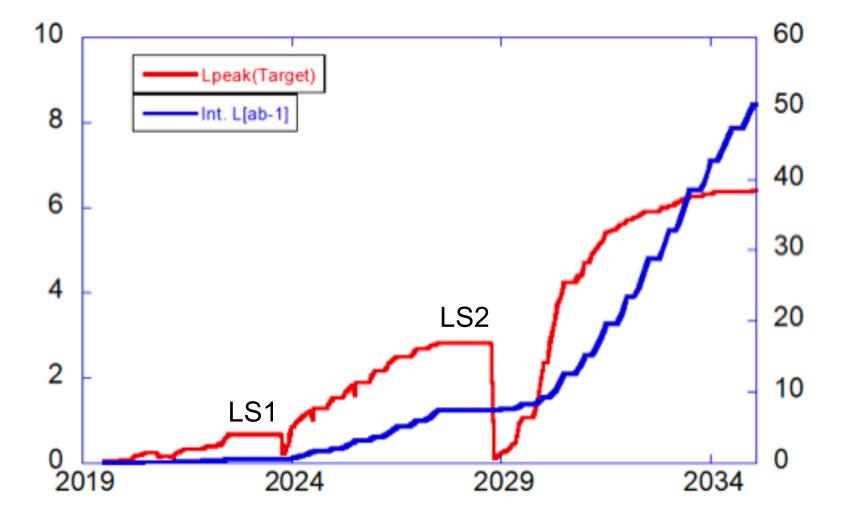
- Charm results
 - Measurement of the D0 and the D+ Lifetimes, Phys Rev Lett 127, 211801 (2021)
 - Measurement of Lambda_c lifetime
 - Measurement of the Omega_c lifetime, ICHEP 2022
- Tau results
 - LFV Tau -> l + alpha (invisible) (see Tenchini ICHEP 2022 talk)
- Heavy quarkonium
 - Search for e+e- -> omega chi_{bJ} (J=0,1,2) at near 10.751 GeV at Belle II, ICHEP 2022
 - Amplitude analysis of e+ e- -> J/psi X, Moriond 2022 ???
- Dark results
 - Will not cover, mention on conclusions slide
- Conclusions & Outlook

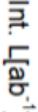
Notes


- No LHCb plenary talk @ CIPANP 2022
- Belle (II) talks for Summary
 - CPV in Belle II, Radek, Zlebcik, HF, Tue 13:30
 - Excl. SL decays at Belle II, Philippe Horak, HF, Tue 17:00
 - Belle II results on inclusive B -> Xl nu, Frank Meier, HF, Sat 15:30
 - Latest results on B -> K nu nu and EWP decays at Belle II, Lucas Martel, HI, Thu 16:30
 - Recent results and future plans in the study of hadronization at Belle (II) and CLAS12, Anselm Vossen, PDF, Sat 15:55
 - LFV in SL b -> c l nu decays, Koji Hara, HI, Sat 14:00 & cLFV in tau, Swagato Banerjee, HI, Thu, 1700
- *Mention heavy quarkonium & dark results*

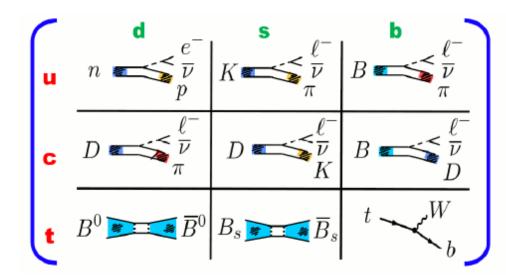

The International Belle II collaboration (geographically)

Belle II has grown to ~1000 researchers from 26 countries

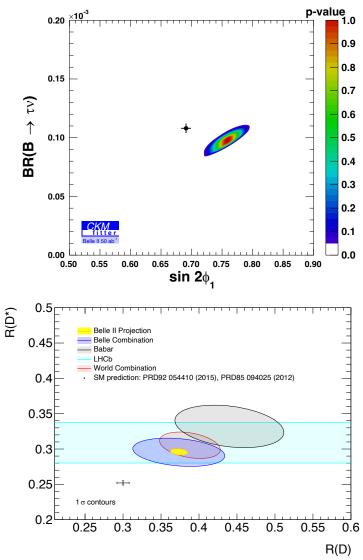

How to get 50x integrated luminosity?



beam size: $100 \ \mu m(H) \ x \ 2 \ \mu m(V)$ $\rightarrow 10 \ \mu m(H) \ x \ 59 \ nm(V)$ Belle-II Goal: $40 \ x \ Belle = 8 \ x \ 10^{35}$


SuperKEKB Luminosity projection

Peak Luminosity [x10³⁵cm₋₂s⁻¹]



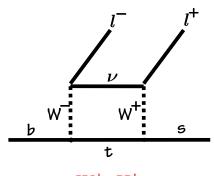
CKM Matrix: weak quark couplings

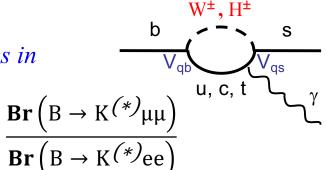
- $|V_{cb}|$ and $|V_{ub}|$ ($\Delta |V_{ub,expt.}| \sim 1\%$ expected) from semileptonic B decays with a variety of methods (excl./incl., full/partial reconstruction, untagged and had./SL tagged)
 - Measure $|V_{ub}|$ with $B \rightarrow \tau v$ as test of NP $(\Delta |V_{ub}| \sim 3\%$ for each had.+SL tagged measurement)
 - Precision measurements of $B \rightarrow D^{(*)} \tau v$
- $|V_{td}|$ and $|V_{ts}|$ from BB mixing and radiative and EW penguin decays
- $|V_{cd}|$ and $|V_{cs}|$ from leptonic and semileptonic $D_{(s)}$ decays, or use to test LQCD ($\Delta f(D_s) \sim 0.3\%$)
- $|V_{us}|$ from τ decays to strange final states

Testing CKM matrix unitarity: Belle II will provide input on the magnitudes of 7 out of 9 CKM matrix elements

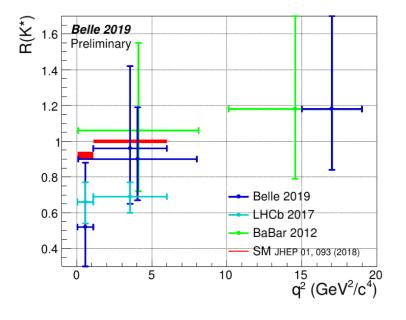
- Belle II is a multipurpose experiment at the SuperKEKB e⁺e⁻ collider operating near the Y(4S) resonance, and located at KEK in Tsukuba, Japan
 - Latest in a long series of successful experiments (ARGUS, CLEO, and B Factories BELLE & BABAR), that made many crucial discoveries
 - BB oscillations
 - $b \rightarrow u$ transition
 - radiative and EW B penguin decays
 - CP violation in the b sector
 - charm mixing
 - Many new conventional and exotic states $(\eta_b, X(3872), Y(4260), Z^+(4430), D_{sJ}(2317), ...)$
- Previous generation B factories BELLE & BABAR (1999 – 2008/10) have published together over 1,000 papers (for a comprehensive review see EPJC 74 (2014) 3026)
- *BELLE II is expected to be similarly prolific*

The B Factories, Belle and BABAR, discovered large CP violation in the B system in 2001, compatible with the SM.


These provided the experimental foundation for the <u>2008 Nobel Prize</u> to Kobayashi and Maskawa.


... Belle II's focus is shifted towards New Physics

Radiative and EW Penguin B Decays


- Sensitive to NP contributing in the loop
- Belle II is uniquely sensitive to
 - *inclusive final states* $B \rightarrow X_{s,d} \gamma$ and $B \rightarrow X_{s,d} l^+ l^-$
 - final states with **photons**, neutrinos, or taus
 - ... and has **nearly equal μ and e efficiency** for LFU tests
 - B_{tag} reconstruction (FEI) improved $\times 2$ wrt Belle
- Measure BF, A_{CP} , A_{FB} , ΔA_{CP} , Δ_{0+} , and angular variables in incl. and excl. $B \rightarrow X_{s,d} \gamma$ and $B \rightarrow X_{s,d} l^+ l^-$ final states
- Determine R_K and R_{K*} with 3-4 % precision
- *Expect Belle II to observe* $B \to K^{(*)}vv$

SM prediction very robust: $R_K(SM) = 1$ [up to tiny QED and lepton mass effects]

 $R_{K(*)}$

