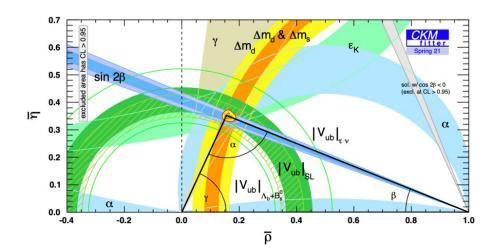
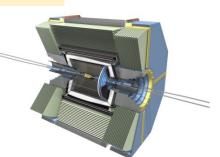


TDCPV and charmless B decays at Belle II IPA2022, TU Wien, 06/09/2022

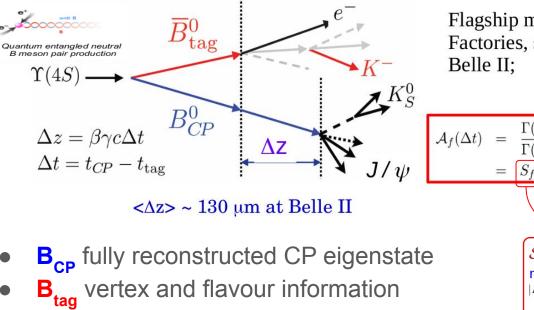

Stefano Lacaprara for the Belle II collaboration


Motivation

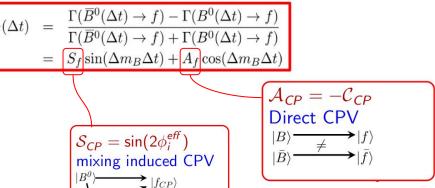
- Belle II experiment at SuperKEKB
 - Collected so far 428/fb: today will show results based on ~190/fb
- Can access to many modes unique to B factories
 - In particular modes with neutral, π^0 , K_L, $\eta(`)$, ...
 - Constrained kinematics and low background environment wrt LHC
- Will improve existing precision measurement on CKM Unitarity Triangles
 - As well search for new physics
- In this talk:
 - Time Dependent measurement
 - B⁰ lifetime and mixing

 - $\blacksquare \quad \mathsf{B} \to \mathsf{K}_{\mathsf{S}}\mathsf{K}_{\mathsf{S}}\mathsf{K}_{\mathsf{S}} \,/\,\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{O}}$
 - Charmless B decay
 - K π puzzle: B \rightarrow K⁺ π^0
 - ϕ_2/α : $B \rightarrow \pi^0 \pi^0$, $\rho \rho$

Stefano Lacaprara, INFN Padova, IPA2022, Wien 6/9/22



TDCPV analysis



- Complex analysis, many key elements:
 - high signal efficiency
 - excellent vertex resolution Δz [More on Tadeas' talk later today]
 - high flavour tagging efficiency [Eur. Phys. J 82, 283 (2022)]
 - background modelling

Stefano Lacaprara, INFN Padova, IPA2022, Wien 6/9/22

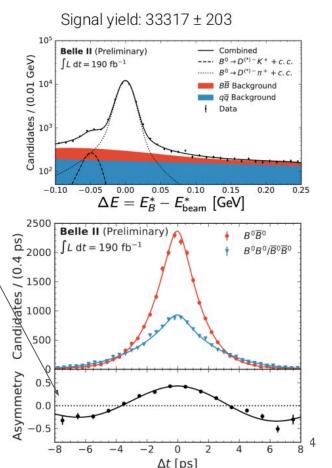
Flagship measurement of the B Factories, still very important at Belle II;

 $|\overline{B}^{\theta}\rangle$

B⁰ lifetime and mixing frequency

- Key step toward time dependent CPV analysis
 - \circ Develop and validate Δt resolution function
 - Hard to compete with LHCb
- Signal side: B⁰->D^{(*)-}h⁺ (h=π,K)
- Tag side: assign flavour via Flavour Tagger

$$\mathcal{A}(\Delta t) = \frac{N_{B\bar{B}} - N_{B\bar{B},\bar{B}\bar{B}}}{N_{B\bar{B}} + N_{B\bar{B},\bar{B}\bar{B}}} = \cos(\Delta m_d \Delta t)(1 - 2w) \otimes R(\Delta t)$$


- Fit:
 - $\circ~~\Delta E$ and continuum suppression BDT output
 - \circ ~ Use sWeight to get background subtracted $~\Delta t$ distribution

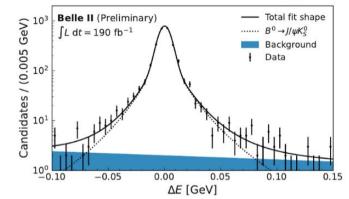
 $\circ \quad \text{Fit } \boldsymbol{\tau}_{_{B}} \text{ and } \boldsymbol{\Delta} \boldsymbol{m}_{_{d}}$

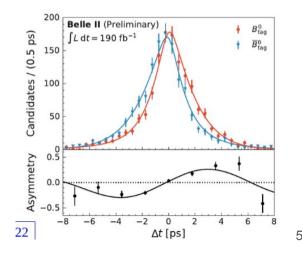
 $\tau_{B^0} = 1.499 \pm 0.013 \,(\text{stat}) \pm 0.008 \,(\text{syst}) \,\text{ps},$ $\Delta m_d = 0.516 \pm 0.008 \,(\text{stat}) \pm 0.005 \,(\text{syst}) \,\text{ps}^{-1}$

• Better syst than Belle/BaBar

Good agreement with WA

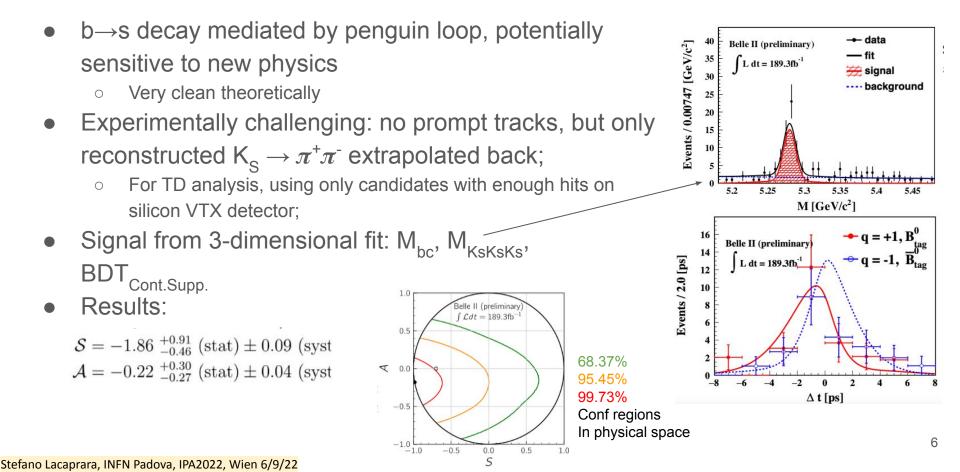
$sin(2\phi_1/\Box)$ from $B \rightarrow J/\psi K_s$


- Golden channel, almost background free
 - Full TDCPV analysis
 - \circ Using only K_{s} for the time being
 - K_L and other $c\overline{c}$ to be added
- Using resolution function developed for lifetime and mixing analysis
 - \circ parameters from B⁰->D^{(*)-}h⁺ modes
- Results:


$$S_{CP} = 0.720 \pm 0.062 (\text{stat}) \pm 0.016 (\text{syst})$$
$$A_{CP} = 0.094 \pm 0.044 (\text{stat}) + 0.042 (\text{syst})$$

World average (K $_{\rm S}$ mode only): S $_{\rm CP}$ = 0.695 \pm 0.019 A $_{\rm CP}$ = 0.000 \pm 0.020

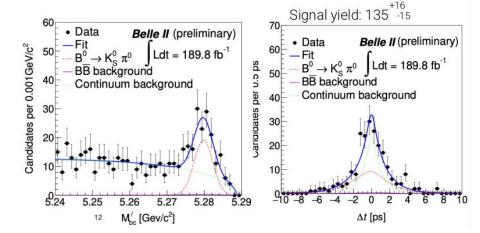
- Still limited by statistics
 - \circ Main syst S_{CP} from size of control samples
 - For A_{CP} from tag-side interference and charge asym



Time dependent $B \rightarrow K_S K_S K_S$

Time dependent $B \rightarrow K_S^{} \pi^0$

- Key ingredient of "K π " puzzle
 - Large unexpected isospin violation in $B \rightarrow K\pi$


$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}}^{\mathsf{CP}} + \mathcal{A}_{K^{0}\pi^{+}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}}^{\mathsf{CP}} \frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}} \approx 0$$

- Uncertainty dominated by $A_{CP}(K_{S}\pi^{0})$: accessible only to Belle II
- Key challenge is signal decay vertex, from $K_S \rightarrow \pi^+ \pi^-$ and IP constraint
 - \circ Control channel $~{\rm B} \rightarrow {\rm J}/\psi~{\rm K}_{\rm S}$, with ${\rm J}/\psi$ not used for vertexing
- 4D fit: M_{bc} , ΔE , Δt , $BDT_{Cont.Supp.}$
- Results:

 $A_{CP} = -0.41 \stackrel{+0.30}{_{+0.32}} (stat.) \pm 0.09 (syst.)$ $B = (11.0 \pm 1.2 (stat.) \pm 1.0 (syst.)) \times 10^{-6}$

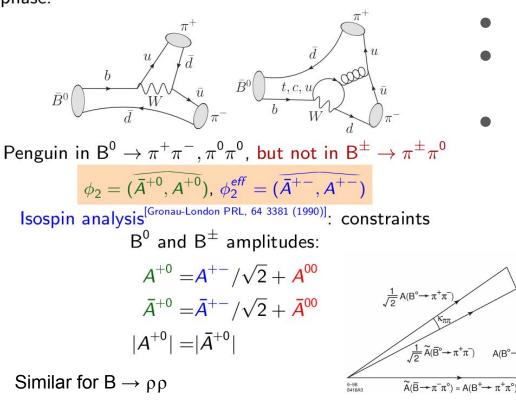
- $B^0 \rightarrow K^+\pi^-, B^+ \rightarrow K_S^0\pi^+ \underline{arXiv:2106.03766}$
- $B^+ \rightarrow K^+ \pi^0$ (later)

Stefano Lacaprara, INFN Padova, IPA2022, Wien 6/9/22

arXiv:2206.07453

$\mathsf{B} ightarrow \mathsf{K}_{_{\mathrm{S}}} \, \pi^{0} \mathsf{g}$

- $B^0 \rightarrow K_s \pi^0 \gamma$ is expected to have small/none mixing induced CPV in SM
 - \circ b→sγ_R is helicity suppressed (m_s/m_b) wrt b→sγ_L
 - $\circ \quad B^{0} \rightarrow s \gamma_{L} \ vs \ B^{0} \rightarrow \overline{B}^{0} \rightarrow s \gamma_{R}$
- First measurement of BR
- Signal selection:
 - 1.4 < E(γ) < 4.0 GeV
 - $M(K_{s}\pi^{0}) < 1.1 \text{ GeV/c}^{2}$
 - Dominated by K^{0*}(892)
- Fit ΔE to extract signal
- Results:
 - Yield: 121 ± 29 events

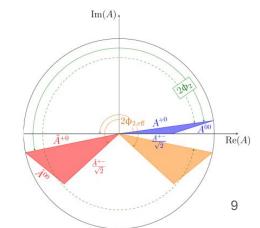

arxiv:2206.08280

 $\mathcal{B}(B^0 \to K_s^0 \pi^0 \gamma) = (7.3 \pm 1.8 \,(\text{stat}) \pm 1.0 \,(\text{syst})) \times 10^{-6}$

Full TDCPV analysis to follow

Measurement of ϕ_2/α

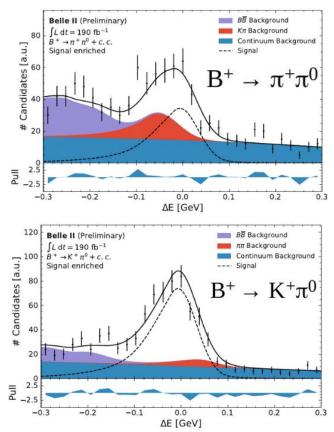
Two amplitudes of comparable size with different weak phase:


Stefano Lacaprara, INFN Padova, IPA2022, Wien 6/9/22

- Need all branching fractions;
- Direct CP asymmetries: C^{+-} , C^{00} ;
- TD CP asymmetries: S⁺⁻, S⁰⁰; • S⁰⁰ reduces folding ambiguities
- Belle II will be able to measure all these observables
 - Final sensitivity ~1° 0

 $\widetilde{A}(\overline{B}^{\circ} \rightarrow \pi^{\circ}\pi^{\circ})$

 $A(B^{\circ} \rightarrow \pi^{\circ} \pi)$

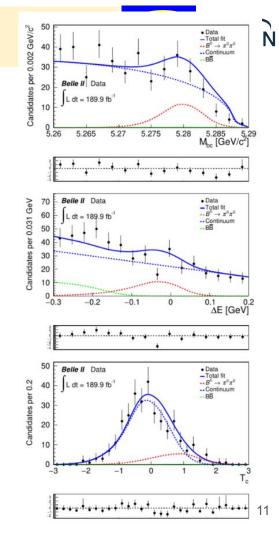


$\mathsf{B}^{+} ightarrow \pi^{+}\pi^{0}$ / $\mathsf{K}^{+}\pi^{0}$

- $B^+ \rightarrow K^+ \pi^0$ enters in " $K \pi$ " puzzle
- Using common selection for both channels
 - Enhance pion and kaon final state
 - Background from continuum $q\overline{q}$ reduced with MVA
- B and A^{CP} from 3D fit on M_{bc} , ΔE , $BDT_{Cont.Supp.}$
 - Simultaneous fit to both samples
 - $D^+ \rightarrow K_s \pi^+$ and $D^0 \rightarrow K^- \pi^+$ for detector asymmetries
- Results:

$$\begin{aligned} \mathcal{B}(\pi^+\pi^0) &= (6.1\pm0.5\pm0.5)\times10^{-6} \\ \mathcal{B}(K^+\pi^0) &= (14.3\pm0.7\pm0.8)\times10^{-6} \\ \mathcal{A}^{CP}(\pi^+\pi^0) &= -0.09\pm0.09\pm0.02 \\ \mathcal{A}^{CP}(K^+\pi^0) &= 0.01\pm0.05\pm0.01 \end{aligned}$$

WA:
$$\mathcal{A}^{CP}_{\mathcal{K}^+\pi^0}=0.030\pm 0.013$$
, $\mathcal{A}^{CP}_{\pi^+\pi^0}=0.03\pm 0.04$


$B^0 \rightarrow \pi^0 \pi^0$

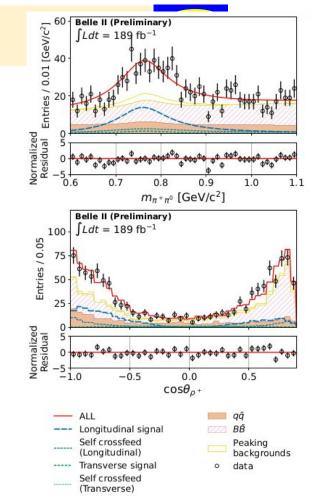
- Most challenging $\pi\pi$ mode, very hard for LHCb
- Fake photons background reduced with multivariate algorithm for $\pi^0 \rightarrow \gamma \gamma$ purity
- Control channel: $B^0 \rightarrow D^0(K^+\pi^-\pi^0) \pi^0$
- Using Flavour Tagger to get direct CP asymmetry
- Results:
 - \circ N Yield: 93 ± 18 (7.5 σ significance)

 $egin{aligned} \mathcal{A}^{ extsf{CP}} &= 0.14 \, \pm \, 0.46 \, \, (extsf{stat}) \, \pm \, 0.07 \, \, (extsf{syst}) \ \mathcal{B} &= & (1.27 \, \pm \, 0.25 \, \, (extsf{stat}) \, \pm \, 0.17 \, \, (extsf{syst})) \cdot 10^{-6} \end{aligned}$

WA: $\mathcal{A}^{CP}=0.33\pm0.22$, $\mathcal{B}=(1.59\pm0.26)\cdot10^{-6}$

• Competitive with Belle with 1/3 of dataset

$B^0\!\!\rightarrow\rho^+\rho^-$


- Broad resonances of vector mesons, π^0 in final state
- CP analysis requires measurement of longitudinal polarization
- Angular analysis using helicity angles of ρ's
- Fit 6D: ΔE , 2*M($\pi\pi$), 2*helicity angles, BDT_{cont.supp.}
- Results:

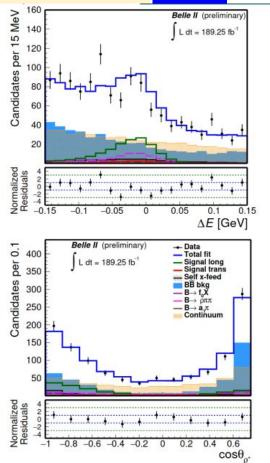
0

$$N(\text{long.}) = 235^{+24}_{-23}$$
, $N(\text{trans.}) = 21^{+19}_{-17}$

 $\mathcal{B} = (2.67 \pm 0.28 \text{ (stat)} \pm 0.28 \text{ (syst)}) \cdot 10^{-5}$ $f_L = 0.956 \pm 0.035 \text{ (stat)} \pm 0.033 \text{ (syst)}$

WA: $\mathcal{B} = (2.77 \pm 0.19) \cdot 10^{-5}$

$B^{*}\!\!\rightarrow\rho^{*}\rho^{0}$


arXiv:2206.12362

- Similar to $B^0 \rightarrow \rho^+ \rho^-$
- 6D fit: ΔE , BDT, 2*M($\pi\pi$), 2*helicity angles
 - Template fit w/ correlation
- Results:
 - N(sig) = 345 ± 31

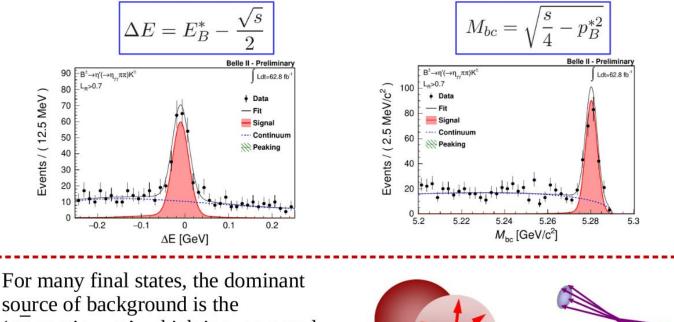
$$\begin{aligned} \mathcal{A}^{\mathsf{CP}} = & -0.069 \pm 0.068 \text{ (stat)} \pm 0.060 \text{ (syst)} \\ \mathcal{B} &= & (23.2^{+2.2}_{-2.1} \text{ (stat)} \pm 2.7 \text{ (syst)}) \cdot 10^{-6} \\ f_{L} &= & 0.943^{+0.035}_{-0.033} \text{ (stat)} \pm 0.027 \text{ (syst)} \end{aligned}$$

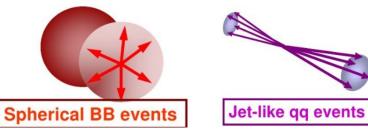
WA:
$$\mathcal{A}^{\mathsf{CP}} = -0.05 \pm 0.05$$
, $\mathcal{B} = (24.0 \pm 1.9) \cdot 10^{-6}$

- Summary
 - Several TDCPV and charmless analysis using a dataset of ~190/fb collected at Belle II presented:
 - Complex analyses with many inputs:
 - tracking, neutral reconstruction, Ks, vertexing, Δt resolution modelling, flavour tagging, complex fit, etc
 - Belle II has now a dataset comparable to that of BaBar
 - We will soon produce physics results impacting world averages.

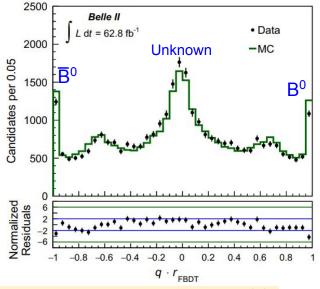
Belle II talk at IPA2022

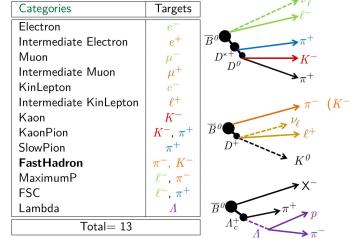
A.Schwartz	
• B factory achievements, early Belle II results and outlook	Earlier today
• J. Dingfelder	-
 Status and prospects for flavour anomalies at Belle II 	Earlier today
• SL	
 This talk 	
• T.Bilka	
 Early charm physics results from Belle II and prospects 	Later today
A.Boschetti	
 Status and prospects for quarkonium at Belle II 	Later today
• S.Banerjee (Belle)	
 Tau physics results at Belle 	Thursday
A.Martini	
 Tau physics programme at Belle II 	Thursday
• L.Corona	
 Dark sector searches at Belle II and other e+e- colliders 	Friday


Backup


B factory variables

Two key variables discriminate against background for fully reconstructed (hadronic) final states:


For many final states, the dominant source of background is the 'qq continuum', which is suppressed based on the different topology with respect to BB events:


Flavour Tagger

- Used to determine the quark-flavour of B_{tag}
- Many different final states considered, combined with two layers of MVA discriminators.
 Categories Targets
 - Developed also a Deep Neural Network with similar performance

Stefano Lacaprara, INFN Padova, IPA2022, Wien 6/9/22

Performance measured on data using B0->D(*)-h+ decays

• Effective efficiency:

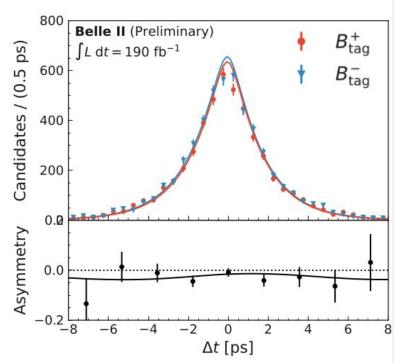
$$\varepsilon_{eff} = \Sigma_i \varepsilon_i (1 - 2w_i)^2$$
$$= (30.0 \pm 1.2 \pm 0.4)\%$$

$sin2\phi1$ validation on B+

Exercise and validate procedure on $B^+ \rightarrow J/\psi K^+$ decays

1- $B^+ {\rightarrow} D^0 \, \pi^+$ events from lifetime and mixing measurement used as calibration

2- ΔE distribution of signal events fitted and background subtracted


3- time-dependent fit on signal events performed with all flavor tagger and resolution function parameters fixed from step 1

Cross-checks with $B^+ \rightarrow J/\psi K^+$. Calibration done with $B^+ \rightarrow D^0 \pi^+$:

 $S^{B+}_{CP} = 0.016 \pm 0.029$ $A^{B+}_{CP} = 0.021 \pm 0.021$

Null asymmetries as expected - the analysis is ready

Signal yield: 10028 ± 105

TABLE I.	Systematic	uncertainties.
----------	------------	----------------

Source	$ au_{\!_B{}^0}~\mathrm{[ps]}~\Delta m_d$	$[\mathrm{ps}^{-1}\hbar/\mathrm{c}^2]$
Fixed Response-Function Parameters	0.006	0.003
Detector Alignment	0.003	0.002
Multiple-Candidate Inclusion	0.002	0.001
Interaction-Region Precision	0.002	0.001
C-Distribution Modeling		0.001
Analysis Bias	0.000	0.001
$\sigma_{\Delta t}$ -Distribution Modeling	0.001	0.001
Total Systematic Uncertainty	0.008	0.005
Statistical Uncertainty	0.013	0.008

$sin2\phi1$ results systematics

Source	$\sigma(S_{CP})$	$\sigma(A_{CP})$
Statistical	0.0622	0.0439
$B^0 \to D^{(*)-}\pi^+$ sample size	0.0111	0.0093
Analysis bias	0.0080	0.0020
Signal charge asymmetry	0.0027	0.0126
$w_6^+ = 0$ limit	0.0014	0.0001
Resolution function parametrization	0.0039	0.0008
$ au_{B^0},\Delta m_d$	0.0007	0.0002
Alignment	0.0020	0.0042
Beam spot	0.0024	0.0020
Momentum scale	0.0005	0.0013
$\sigma_{\Delta t}$ binning	0.0050	0.0051
Multiple candidates	0.0005	0.0008
Tag-side interference	0.0020	$^{+0.0380}_{-0.000}$
Total systematic	0.0159	$+0.0418 \\ -0.0173$

Measurement of ϕ_2/α

• The measurement of ϕ_2 from $B \to \pi\pi$ (or $B \to \rho\rho$) final states comes from an isospin analysis:

The following equalities hold: $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$ $\frac{1}{\sqrt{2}}\widetilde{A}^{+-} + \widetilde{A}^{00} = \widetilde{A}^{+0}$ $A^{+0} = \widetilde{A}^{+0}$ $\frac{1}{\sqrt{2}}\widetilde{A}^{+-} + \widetilde{A}^{00} = \widetilde{A}^{+0}$ $\frac{1}{\sqrt{2}}\widetilde{A}(\overline{B}^{\circ} + \pi^{+}\pi^{-}) = A(B^{\circ} + \pi^{+}\pi^{\circ})$

- Observables (for e.g. $B \rightarrow \pi\pi$):
 - branching fractions of: $B^0 \rightarrow \pi^+ \pi^0$, $\pi^+ \pi^-$, $\pi^0 \pi^0$;
 - → direct (time-independent) CP asymmetries: C⁺⁻, C⁰⁰;
 - ➤ time-dependent CP asymmetries: S⁺⁻, S⁰⁰.
- Belle II will be able to measure all these observables;
- We expect to push the sensitivity to α to ~1°.

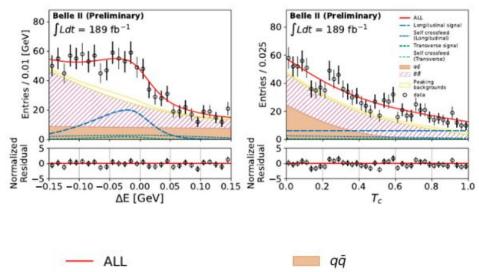
 M. Gronau and D. London, PRL 65 (1990), 3381

$B \rightarrow K_{S} \pi^{0}$ systematics

Source	$\delta \mathcal{B}$ (%)	δA_{CP}
Tracking efficiency	0.6	3 4
K_s^0 reconstruction efficiency	4.2	1
π^0 reconstruction efficiency	7.5	-
Continuum suppression efficiency	1.6	-
Number of $B\overline{B}$ pairs	3.2	
Flavor tagging	-	0.040
Resolution function	_	0.050
External inputs	0.4	0.021
$B\overline{B}$ background asymmetry	-	0.002
Signal modelling	1.0	0.015
Background modelling	0.9	0.004
Possible fit bias	2.0	0.010
Tag-side interference	-	0.038
Total	9.6	0.086

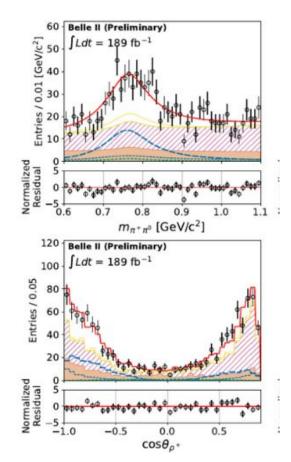
$B \rightarrow K/\pi^+\pi^0$ systematics

Source	$B^+ \to K^+ \pi^0 ~[\%]$	$B^+ \to \pi^+ \pi^0 ~[\%]$
Tracking	0.30	0.30
B counting	1.5	1.5
$R(B^+B^-)$	1.2	1.2
π^0 efficiency	4.4	4.4
CS efficiency	0.9	1.1
Particle identification	0.2	0.5
Multiple candidates	0.01	0.9
Continuum BDT shift and scale $(K^+~\pi^0)$	0.5	0.08
Continuum BDT shift and scale $(\pi^+ \pi^0)$	0.1	1.6
ΔE shift and scale	2.0	6.3
$M_{\rm bc}$ shift and scale	1.1	2.3
Signal BDT shift and scale $(K^+ \pi^0)$	0.4	0.1
Signal BDT shift and scale $(\pi^+ \pi^0)$	0.02	0.8
$B\overline{B}$ Shape	0.4	0.2
Total systematic uncertainty	5.5	8.6
Statistical uncertainty	4.8	8.7


TABLE II. Summary of the fractional uncertainties on the branching ratios.

Source	$B^+ \to K^+ \pi^0$	$B^+ \to \pi^+ \pi^0$
Continuum BDT shift and scale $(K^+ \pi^0)$	0.0002	0.0006
Continuum BDT shift and scale $(\pi^+ \pi^0)$	0.0010	0.0092
ΔE shift and scale	0.0014	0.0038
$M_{\rm bc}$ shift and scale	0.0008	0.0023
Signal BDT shift and scale $(K^+ \pi^0)$	0.0002	< 0.0001
Signal BDT shift and scale $(\pi^+ \pi^0)$	0.0002	0.0005
$B\overline{B}$ Shape	0.0000	0.0001
Instrumental asymmetry	0.010	0.010
Fit bias	-	0.0118
Total systematic uncertainty	0.0102	0.0185
Statistical uncertainty	0.0470	0.0851

TABLE III. Summary of the absolute uncertainties on the $C\!P$ asymmetries.


 $B^0 \rightarrow \rho^+ \rho^-$

 $B^0\!\!\rightarrow\rho^+\rho^-$

Table 3: Summary of the	systematic uncertainties
-------------------------	--------------------------

source	\mathcal{B} [%]	f_L [%]
Tracking	0.6	-
Photon and π^0 selection	7.7	-
PID	0.8	-
Continuum suppression	2.1	-
$N_{B\bar{B}}$	1.5	-
Single candidate selection	2.2	0.9
Signal model	2.4	2.0
Self cross-feed model	$+2.7 \\ -0.9$	< 0.1
Continuum model	1.3	0.7
$B\bar{B} ext{ model}$	2.0	2.2
Peaking background model	0.4	0.7
$\cos \theta_{\rho^{\pm}}$ mismodeling	4.4	0.3
Fit bias	0.9	1.0
Simulation sample size	1.0	0.2
Total	$^{+10.6}_{-10.3}$	± 3.4

$B^+\!\!\to\rho^+\rho^0$ systematics

TABLE II. Summary of the (fractional) systematic uncertainties of the branching-fraction and longitudinal-polarization-fraction measurements.

Source	B	f_L	\mathcal{A}_{CP}
Tracking	0.9%	n/a	n/a
π^0 efficiency	5.7%	n/a	n/a
PID and continuum-supp. eff.	1.2%	n/a	n/a
$N_{B^{+}B^{-}}$	3.1%	n/a	n/a
Instrumental asymmetry correction	n/a	n/a	0.005
Single candidate selection	2.2%	1.1%	0.037
Signal model	0.10%	0.02%	0.002
Continuum bkg. model	0.04 %	1.2%	0.003
$B\overline{B}$ bkg. model	0.05%	0.08%	0.002
Fit biases	4.4%	1.1%	0.010
Data-simulation mismodeling	8.0%	2.1%	0.002
Peaking background CP asymmetries	0.3%	0.1%	0.046
Total	11.5%	2.9%	0.060