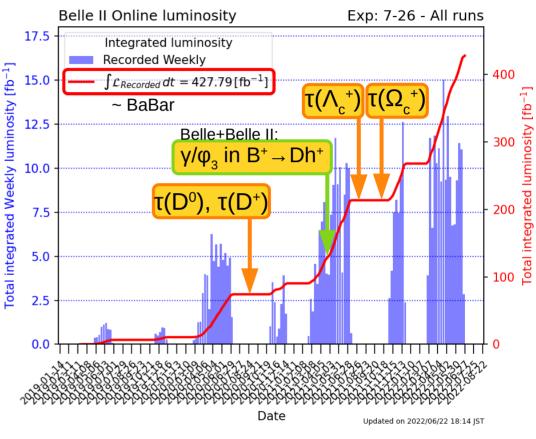


Early charm physics results from Belle II and prospects

Tadeáš Bilka^{1*}

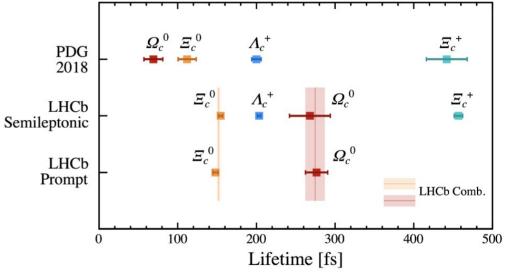
for the Belle II Collaboration

¹Charles University, Prague


IPA2022: Interplay between Particle and Astroparticle physics 2022

Sep 5 – 9, 2022 TU Wien

* bilka@ipnp.mff.cuni.cz


- A lot of charm hadrons produced
 - Prompt in $e^+e^- \rightarrow c\bar{c}$ (1.3 nb)
 - Secondary in $\Upsilon(4S) \rightarrow B \rightarrow D$ (1.1 nb)
- Opportunities for charm physics New Physics?
 - CP-V measurements, searches for rare and forbidden decays, *spectroscopy* ...
 - Lifetimes of charm mesons and baryons
 Better understanding of strong interactions at low E?

Motivations for charm lifetime measurements

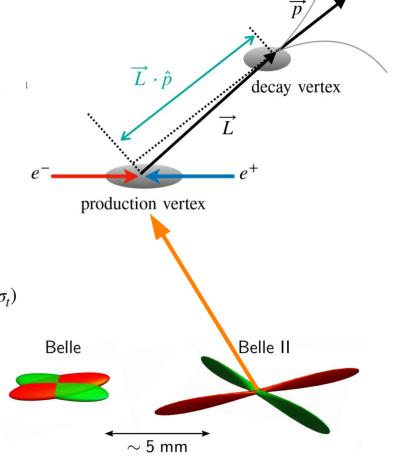
- Beauty and charm hadron lifetimes predicted by Heavy Quark Expansion (HQE)
 - Charm is challenging (higher-order corrections + QCD contributions)
 - Improvements important for reliable predictions in flavor physics
- Charm lifetime hierarchy recently revisited by Semile LHCb
 - Surprise: Ω_c⁰ is not the shortes-living charm baryon!?
 - All lifetimes relative to D+
- Belle II reach is unique!
 - Absolute lifetime measurements
 - Fruitful program to measure charm lifetimes, thanks to excellent vertexing, tiny interaction region, and detector calibrations

 $\tau(\Omega_c^0) < \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Xi_c^+)$

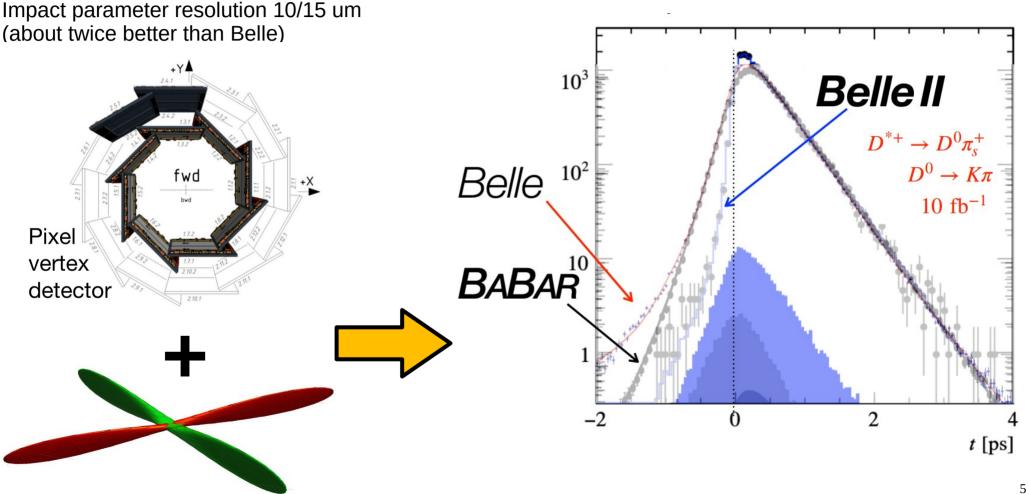
$$\tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Omega_c^0) < \tau(\Xi_c^+)$$

Possible reasons why HQE has initially failed are being debated (Science Bulletin 67 (2022) 445-447, arXiv:2204.11935)

- Signal and background fractions from mass fit, lifetimebiasing decays from B's removed by kinematic cut
- Lifetime extracted from unbinned maximum likelihood fit to distribution of the reconstructed decay time and its uncertainty:

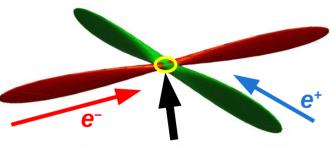

- 00

Production vertex constrained by measured primary interaction point (beamspot)


$$t = \frac{m}{p}(\vec{L} \cdot \hat{p})$$

$$PDF(t, \sigma_t) = (1 - f_b) \int_0^\infty e^{-t_{true}/\tau} R(t - t_{true} | b, s\sigma_t) dt_{true} PDF_{sig}(\sigma_t) + f_b PDF_{bkg}(t, \sigma_t)$$

 Excellent decay time resolution thanks to super-small luminous region (nano-beam) used as a constraint + new pixel vertex detector (1st layer 14 mm from collision) resolution



5 Significant resolution improvement to Belle/BaBar Belle II

Precision lifetimes: Ingredients

Interaction region calibration

 $\sigma_{Y'} = 0.2 \mu m, \sigma_{X'} = 13 \mu m, \sigma_{Z'} = 320 \mu m$

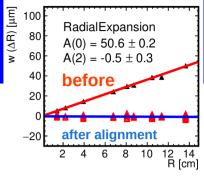
3D Gaussian PDF width, position and orientation in space calibrated every 30 minutes

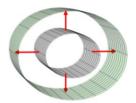
Based on high-stat di-muon events

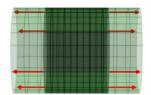
Tracker alignment

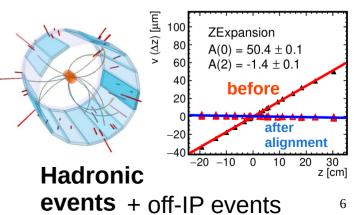
Simultaneous global and local alignment of pixels, strips (up to 4th order surface defomations) and wire chamber (60k parameters) from tracks

+ Run-dependent alignment (also for PXD sensors)


Data-driven and MC-driven misalignment estimates provided for estimation of systematics $\overline{\ddagger}$

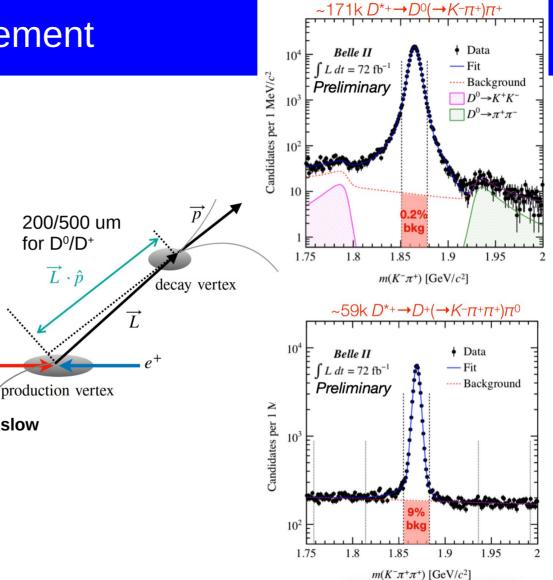

Cosmic


rays


Di-muon

events

171×10³ and 59×10³ signal events for neutral and charged D


> $D^{*+} \rightarrow (D^0 \rightarrow K^- \pi^+) \pi^+$ $D^{*+} \rightarrow (D^+ \rightarrow K^- \pi^+ \pi^+) \pi^0$

- $B \rightarrow D$ decays removed using $p^{\text{CMS}}(D^{*+}) > 2.5(2.6) \text{ GeV}/c \text{ for } D^0(D^+)$
- High purity .
 - Background neglected for D^o (systematics)

 π^+ slow

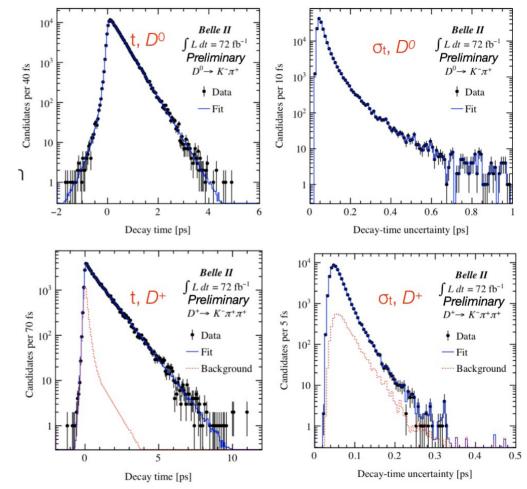
From simultaneous sideband fit for D⁺

> prompt + 2 lifetime components

7

D⁰/D⁺ Lifetime Measurement

 $\tau(D^0) = 410.5 \pm 1.1 \pm 0.8 \,\mathrm{fs}$ $\tau(D^+) = 1030.4 \pm 4.7 \pm 3.1 \,\mathrm{fs}$


 $\tau(D^+)/\tau(D^0) = 2.510 \pm 0.015$

Phys. Rev. Lett. **127** 21801(2021)

- Most precise to date and consistent with WA, improving LHCb reference
- Still dominated by statistics

 Only preliminary alignment used
- Demonstrates excellent vertexing

Source	Uncertainty (fs)		
	$D^0 \to K^- \pi^+$	$D^+ \to K^- \pi^+ \pi^+$	
Statistical	1.1	4.7	
Resolution model	0.16	0.39	
Backgrounds	0.24	2.52	
Detector alignment	0.72	1.70	
Momentum scale	0.19	0.48	
Input charm masses	0.01	0.03	
Total systematic	0.8	3.1	

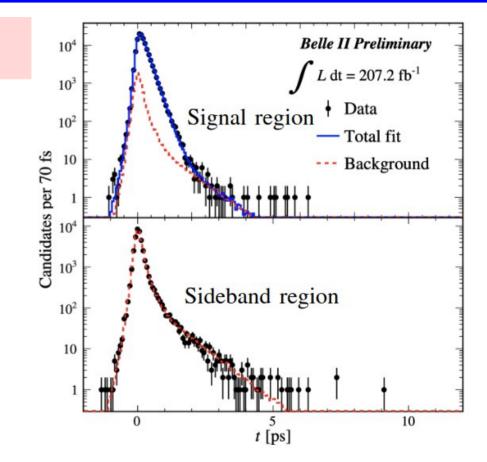
Reconstructed low-background sample

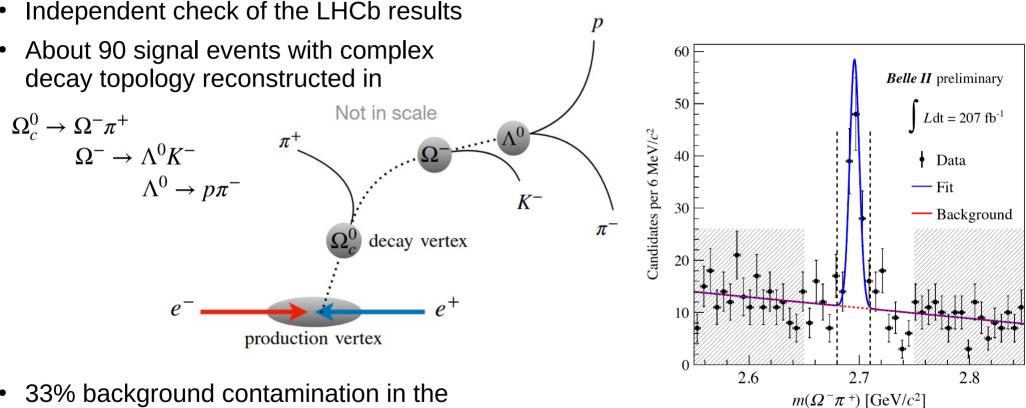
$$\Lambda_c^+ \to p K^- \pi^+$$

- 116×10³ signal events with 7.5% background in the signal region
- Potential lifetime-biasing backgrounds

decay	BR	au
$\Xi_c^0 ightarrow \Lambda_c^+ \pi^-$	0.55 ± 0.20 % (LHCb)	153 ± 6 fs
$\Xi_c^+ o \Lambda_c^+ \pi^0$	1.11 % (theory pred.)	456 \pm 5 fs

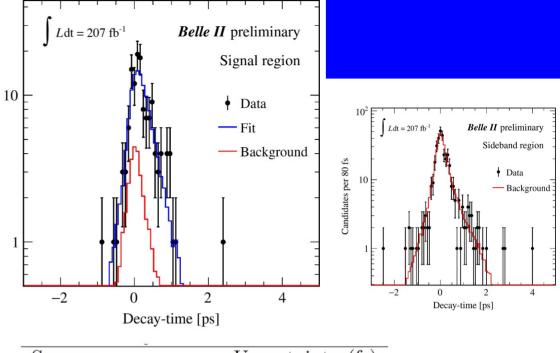
- not taken into account in previous measurements
- conservative estimate of yields by fits to $\Lambda_{\rm c}{}^{\scriptscriptstyle +}$ impact parameter distribution
- vetos applied on $M(pK^-\pi^+\pi^-)$ - $M(pK^-\pi^+)$ $M(pK^-\pi^+\pi^0)$ - $M(pK^-\pi^+)$
- remaining bias evaulated by mixing signal with generic MC \rightarrow half as correction, half as systematics




$$\tau(\Lambda_c^+) = 203.2 \pm 0.9$$
(stat.) ± 0.8 (syst.) fs

- Consistent with current WA and most precise to date
- Dominant systematics: resolution modeling and alignment
 - Reprocessing alignment for part of the dataset

Source	Uncertainty [fs]
Ξ_c contamination	0.34
Resolution model	0.46
Non- Ξ_c backgrounds	0.20
Detector alignment	0.46
Momentum scale	0.09
Total	0.77

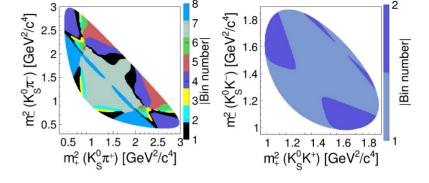

- 33% background contamination in the signal region
 - Propmpt + lifetime components

- $\tau(\Omega_{\rm c}^0) = 243 \pm 48(\text{stat.}) \pm 11(\text{syst.}) \text{ fs}$
- Consistent with LHCb average
 - 3.4σ tension with pre-LHCb

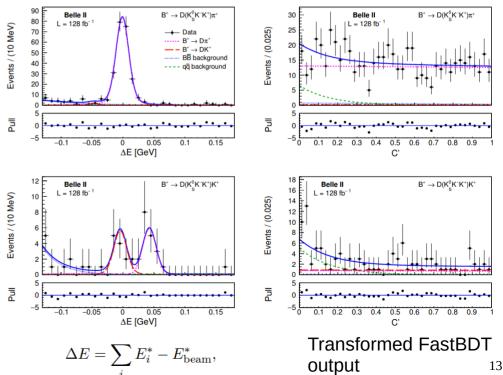
Candidates per 80 fs

- Demonstration of vertexing capabilities in complex decay topologies
- Limited by statistics
- Systematics dominated by background and resolution model

Source	Uncertainty (fs)
Fit bias	3.4
Resolution model	6.2
Background model	8.3
Detector alignment	1.6
Momentum scale	0.2
Input charm masses	0.2
Total	11.0


Towards precision CP-V: γ/ϕ_3

Combined analysis of Belle and Belle II data to determine the CKM angle ϕ_3 using $B^+ \rightarrow D(K^0_S h^- h^+)h^+$ decays


Motivation: Constraint BSM physics by comparing direct (tree ... 3° error) and indirect (loops ... 0.9° error) determination of γ/ϕ_3

- First physics paper combining Belle (711 fb⁻¹) and Belle II (128 fb⁻¹) data
- Model-independent Dalitz plot analysis

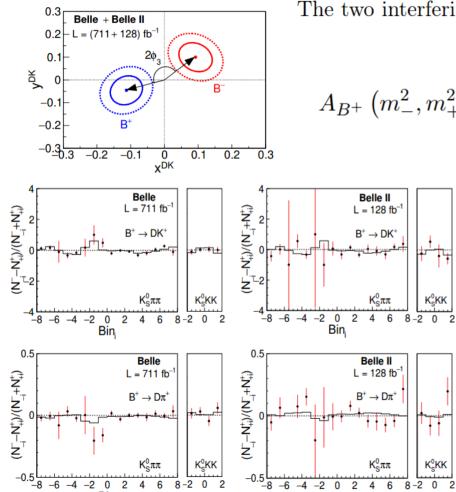

arXiv:2104.03628

Figure 1. Binning schemes used for (left) $B^+ \to D(K_S^0 \pi^+ \pi^-) K^+$ decays and (right) $B^+ \to D(K_S^0 K^+ K^-) K^+$ decays.

Towards precision CP-V: γ/ϕ_3

The two interfering decays sensitive to ϕ_3 are $B^+ \to \overline{D}{}^0 K^+$ and $B^+ \to D^0 K^+$ \downarrow CKM & color suppressed

$$A_{B^+}\left(m_{-}^2, m_{+}^2\right) \propto A_{\bar{D}}\left(m_{-}^2, m_{+}^2\right) + r_B^{DK} e^{i\left(\delta_B^{DK} - \phi_3\right)} A_D\left(m_{-}^2, m_{+}^2\right)$$

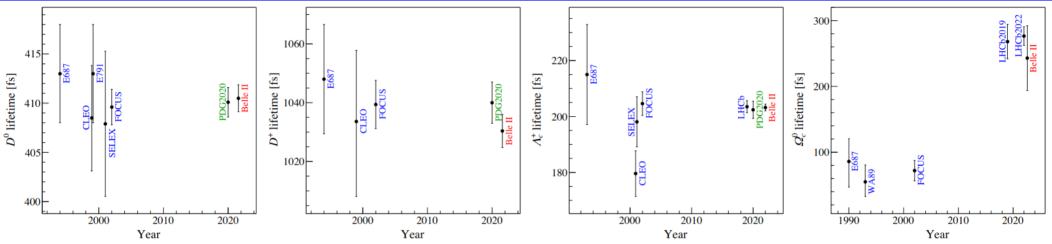
External strong phase inputs (CLEO + BESIII)

$$\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ},$$

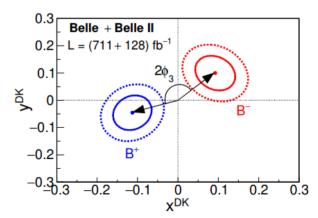
$$r_B^{DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002,$$

$$\delta_B^{DK} = (124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ}.$$

Improved precision with respect to Belle II for r & δ , almost none for ϕ_3 (slightly different central value from Belle II)


```
Not yet better than WA (66.2^{+3.4}_{-3.2}), but only stat. limited. At 10/fb ... < 4° stat. error
```

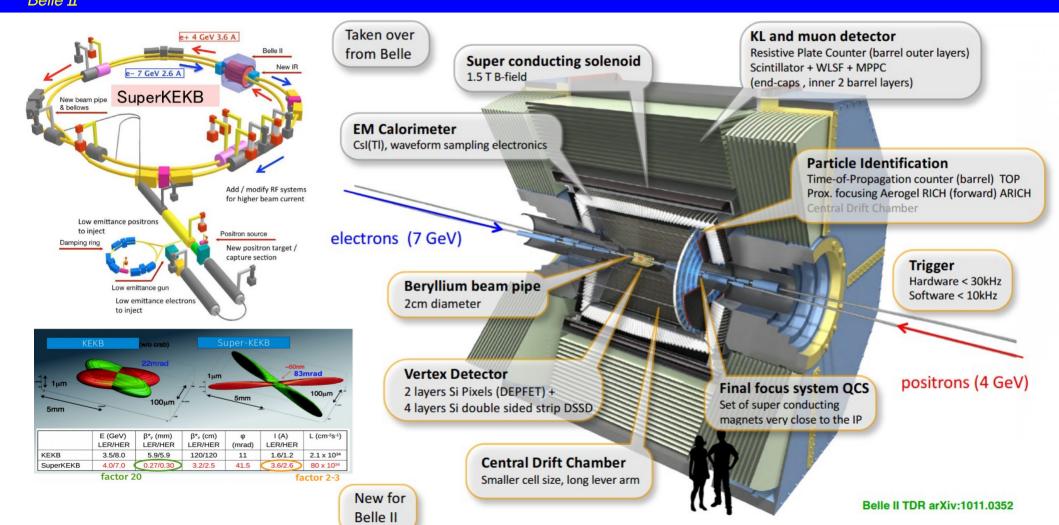
Charm prospects: Time-integrated CP-V


- Similarly to Belle, Belle II can contribute to more precise CP violation measurements charm
- Direct CP-V precision to reach O(10⁻⁴) for the full dataset
- Belle II input is crucial in channels with neutrals in the final state

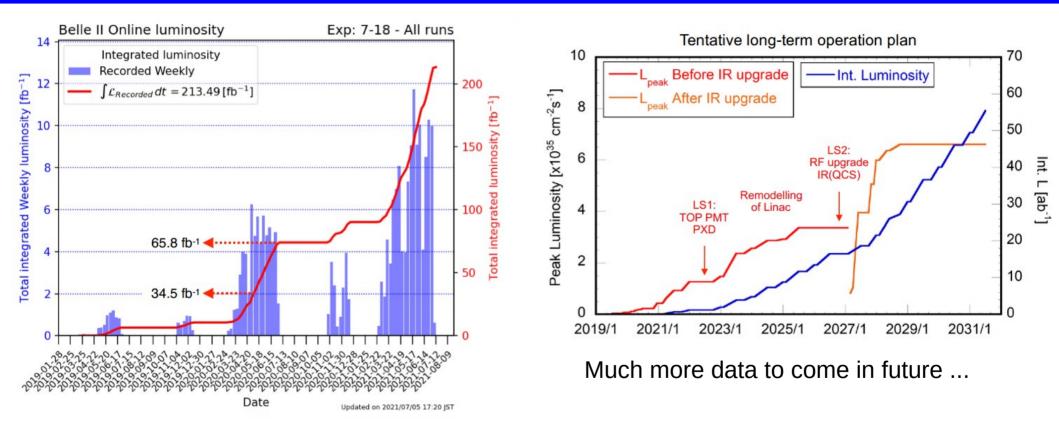
Mode	$\mathcal{L}(\mathbf{fb}^{-1})$	A _{CP} (%)	Belle II 50 ab^{-1}	5 ab^{-1}
$\frac{1}{D^0 \to K^+ K^-}$. /	01 * *		
	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03	± 0.10
$D^0 o \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05	± 0.16
$D^0 ightarrow \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09	± 0.28
$D^0 \rightarrow K^0_{ m S} \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.02	± 0.08
$D^0 ightarrow K^{0}_{ m S} K^0_{ m S}$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23	± 0.66
$D^0 ightarrow K_{ m S}^0 \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07	± 0.21
$D^0 ightarrow K_{ m S}^{ m 0} \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09	± 0.27
$D^0 o \pi^+ \pi^- \pi^0$	532	$+0.43 \pm 1.30$	±0.13	± 0.42
$D^0 ightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40	± 1.26
$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33	± 1.04
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04	± 0.12
$D^+ ightarrow \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17	± 0.54
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14	± 0.46
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14	± 0.45
$D^+ \rightarrow K_8^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.02	± 0.05
$D^+ ightarrow K_{ m S}^{ m 0} K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.04	± 0.14
$D_s^+ \rightarrow K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29	± 0.93
$D_s^+ \to K_S^0 K^+$	673	$+0.12\ \pm 0.36\ \pm 0.22$	± 0.05	± 0.15

- World-leading charm lifetime measurements
 - Demonstrate excellent vertexing capabilities, paving way for precise time-dependent measurements
- Independent confirmation of Ω_{c^0} lifetime from LHCb and new charmed-baryon-lifetime hierarchy
- Most precise γ/ϕ_3 from B-Factories using $B^+ \rightarrow D(K_sh^+h^-)h^+$ and Belle+Belle II data
- More data on tape, and much more to come! Belle II will give a crucial contribution via measurements with channels with neutrals in the final states:
 - Prospects for direct CP asymetries in charm, charmonium spectroscopy, rare and forbidden decays, time-dependent analyses; $B \rightarrow charm$

Thank you for your attention!



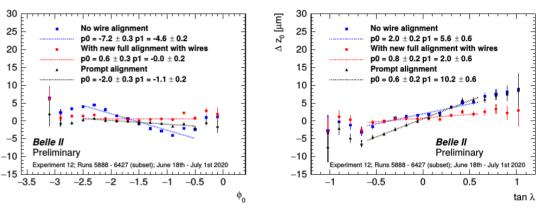
BACKUP


	$\boldsymbol{\mathcal{D}}$
Bel	le II

Channel	Observable	Belle/BaF	Scaled		
		\mathcal{L} [ab ⁻¹] Value		$5 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
Leptonic decays					
	μ^+ events		492 ± 26	2.7k	27k
$D_s^+ \rightarrow \ell^+ \nu$	τ^+ events	0.913	2217 ± 83	12.1k	121k
	f_{Ds}		2.5%	1.1%	0.34%
$D^+ \rightarrow \ell^+ \nu$	μ^+ events	_	_	125	1250
$D^+ \rightarrow \ell^+ \nu$	f_D			6.4%	2.0%
Rare and radiative dee	cays				
$D^0 ightarrow ho^0 \gamma$	ACP		$+0.056\pm0.152\pm0.006$	± 0.07	± 0.02
$D^0 ightarrow \phi \gamma$	A_{CP}	0.943	$-0.094 \pm 0.066 \pm 0.001$	± 0.03	± 0.01
$D^0 o \overline{K}^{*0} \gamma$	$A_{\rm CP}$		$-0.003\pm0.020\pm0.000$	± 0.01	± 0.003
Mixing and indirect (time-dependent) CP violation			
$D^0 ightarrow K^+ \pi^-$	x' ² (%)	0.976	0.009 ± 0.022	± 0.0075	± 0.0023
(no CPV)	y' (%)	0.976	0.46 ± 0.34	± 0.11	± 0.035
(CDV -11 1)	q/p	World avg. [230]	$0.89 \stackrel{+0.08}{_{-0.07}}$	± 0.20	± 0.05
(CPV allowed)	φ (°)	with LHCb -	$-12.9^{+9.9}_{-8.7}$	$\pm 16^{\circ}$	$\pm 5.7^{\circ}$
-0 0	<i>x</i> ″		$2.61^{+0.57}_{-0.68} \pm 0.39$		± 0.080
$D^0 \rightarrow K^+ \pi^- \pi^0$	<i>y</i> ″	0.384	$-0.06^{+0.55}_{-0.64} \pm 0.34$		± 0.070
	x (%)		$\begin{array}{c} 0.56 \pm 0.19 +0.04 \\ -0.08 \\ 0.08 \\ 0.30 \pm 0.15 \substack{+0.04 \\ -0.05 \\ -0.05 \\ -0.05 \\ 0.07 \\ 0.90 \substack{+0.16 \\ -0.05 \\ -0.05 \\ -0.05 \\ 0.90 \ -0.15 \ -0.04 \\ -0.05 \\ 0.90 \ -0.05 \\ 0.90$	± 0.16	± 0.11
- 0 0	y (%)		$0.30 \pm 0.15 \stackrel{-0.08}{+0.04} \stackrel{-0.03}{+0.03}$	± 0.10	± 0.05
$D^0 \rightarrow K^0_{ m S} \pi^+ \pi^-$	q/p	0.921	0.90 + 0.16 + 0.05 + 0.06	±0.12	± 0.07
	φ(°)		$-6 \pm 11 \pm 3^{+3}_{-4}$	± 8	± 4
Direct (time-integrate		in %	-4		
$D^0 \rightarrow K^+ K^-$	A _{CP}	0.976	$-0.32 \pm 0.21 \pm 0.09$	± 0.10	± 0.03
$D^0 \rightarrow \pi^+\pi^-$	A _{CP}	0.976	$+0.55 \pm 0.36 \pm 0.09$	± 0.16	± 0.05
$D^0 \rightarrow \pi^0 \pi^0$	A _{CP}	0.966	$-0.03 \pm 0.64 \pm 0.10$	± 0.28	± 0.09
$D^0 \rightarrow K^0_{\rm S} \pi^0$	ACP	0.966	$-0.21 \pm 0.16 \pm 0.07$	± 0.08	± 0.02
$D^0 \rightarrow K_S^0 K_S^0$	A _{CP}	0.921	$-0.02 \pm 1.53 \pm 0.17$	± 0.66	± 0.23
$D^0 \rightarrow K_S^0 \eta$	ACP	0.791	$+0.54 \pm 0.51 \pm 0.16$	± 0.21	± 0.07
$D^0 \rightarrow K_S^0 \eta'$	A _{CP}	0.791	$+0.98 \pm 0.67 \pm 0.14$	± 0.27	± 0.09
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	A _{CP}	0.532	$+0.43 \pm 1.30$	± 0.42	± 0.13
$D^0 \rightarrow K^+ \pi^- \pi^0$	$A_{\rm CP}$	0.281	-0.60 ± 5.30	± 1.26	± 0.40
$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$	$A_{\rm CP}$	0.281	-1.80 ± 4.40	± 1.04	± 0.33
$D^+ \rightarrow \phi \pi^+$	$A_{\rm CP}$	0.955	$+0.51 \pm 0.28 \pm 0.05$	± 0.12	± 0.04
$D^+ \rightarrow \pi^+ \pi^0$	A _{CP}	0.921	$+2.31 \pm 1.24 \pm 0.23$	± 0.54	± 0.17
$D^+ \rightarrow \eta \pi^+$	$A_{\rm CP}$	0.791	$+1.74 \pm 1.13 \pm 0.19$	± 0.46	± 0.14
$D^+ \rightarrow \eta' \pi^+$	$A_{\rm CP}$	0.791	$-0.12 \pm 1.12 \pm 0.17$	± 0.45	± 0.14
$D^+ \rightarrow K^0_S \pi^+$	$A_{\rm CP}$	0.977	$-0.36 \pm 0.09 \pm 0.07$	± 0.05	± 0.02
$D^+ \rightarrow K^{\vec{0}}_S K^+$	ACP	0.977	$-0.25 \pm 0.28 \pm 0.14$	± 0.14	± 0.04
$D_s^+ \rightarrow K_s^0 \pi^+$	$A_{\rm CP}$	0.673	$+5.45 \pm 2.50 \pm 0.33$	± 0.93	± 0.29
$D_s^+ \to K_S^0 K^+$	ACP	0.673	$+0.12 \pm 0.36 \pm 0.22$	± 0.15	± 0.05
			,		

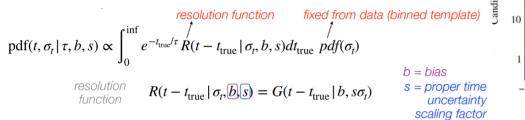
Belle II @ SuperKEKB

Integrated luminosity and long-term plan



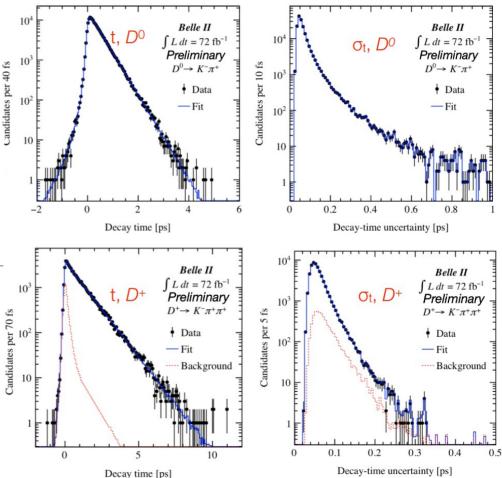
Alignment of realistic wire misalignment:

Alignment further improves after full reprocessing


Full simultaneous re-alignment with up to 60k parameters of VXD and drift chamber

∆ d₀ [µm]

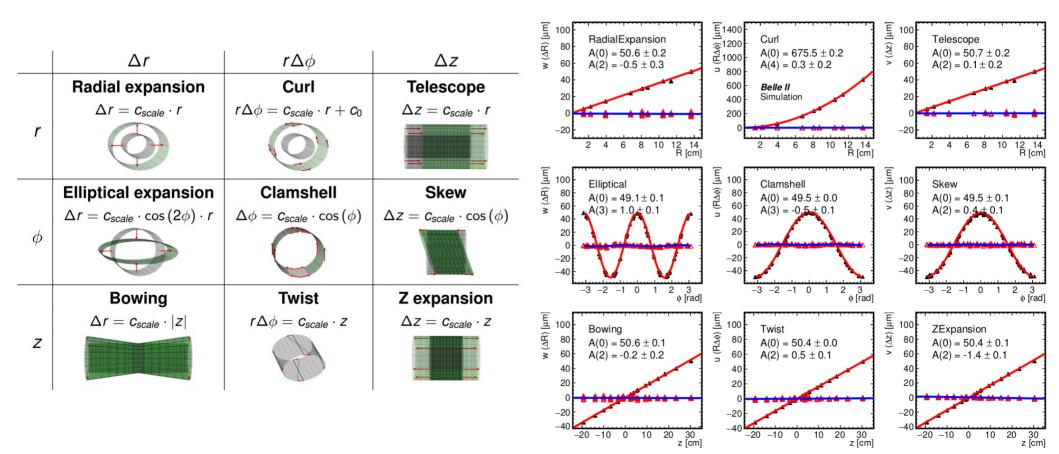
+ run-dependent alignment of large structures and pixel sensors


Lifetime extracted by 2D UML fit to decay time and its uncertainty. All parameters extracted directly from the data.

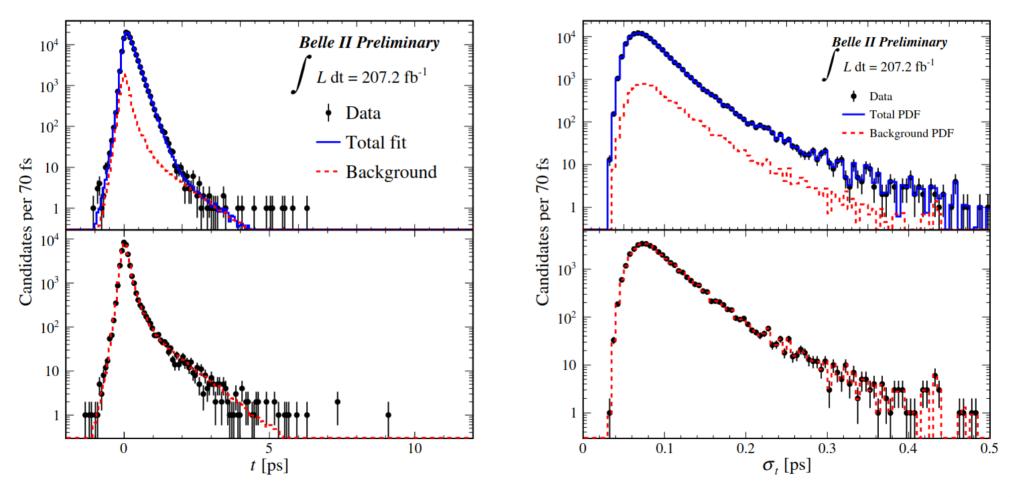
Empirical model for background from data side-bands. Fitted simultaneously with signal region. Bkg fraction fixed to result of mass fit

$$\mathsf{pdf}_{bkg}(t,\sigma_t) = \mathsf{pdf}_{bkg}(t \mid \sigma_t) \; \mathsf{pdf}_{bkg}(\sigma_t)$$

 $\begin{array}{c} \textit{zero-lifetime component} & \textit{lifetime#1 component} \\ \mathsf{pdf}_{\mathsf{bkg}}(t \mid \sigma_{t}) = (1 - f_{bl}) R(t \mid b + b_{\mathsf{bkg}}) s\sigma_{t}) + f_{bl} [f_{bl1} \mathsf{pdf}_{bl1}(t \mid \sigma_{t}, \overline{\tau_{b1}}, b + b_{\mathsf{bkg}}, s) + (1 - f_{bl1}) \mathsf{pdf}_{bl2}(t \mid \sigma_{t}, \overline{\tau_{b2}}, b + b_{\mathsf{bkg}}, s)] \end{array}$



LHCb-Belle II Comparison


	Observable	Current Belle/ Babar	2019 LHCb	Belle II (5 ab ⁻¹)	Belle II (50 ab ⁻¹)	LHCb (23 fb ⁻¹)	Belle II Upgrade (250 ab ⁻¹)	LHCb upgrade II (300 fb ⁻¹)
	CKM precision, new physics in CP	<u>Violation</u>						
	$\sin 2\beta/\phi_1 \ (B \rightarrow J/\psi \ K_S)$	0.03	0.04	0.012	0.005	0.011	0.002	0.003
	γ/ϕ_3	13º	5.4°	4.7°	1.5°	1.5°	0.4°	0.4°
	α/φ ₂	4º	-	2	0.6°	-	0.3°	_
*	$ V_{ub} $ (Belle) or $ V_{ub} / V_{cb} $ (LHCb)	4.5%	6%	2%	1%	3%	<1%	1%
	φs	-	49 mrad	_	_	14 mrad	_	4 mrad
	$S_{CP}(B \rightarrow \eta' K_{S}, gluonic penguin)$	0.08	0	0.03	0.015	0	0.007	0
	$A_{CP}(B \rightarrow K_{S}\pi^{0})$	0.15	_	0.07	0.04	_	0.02	_
	New physics in radiative & EW Per	iguins, LFUV						
	$S_{CP}(B_d \rightarrow K^* \gamma)$	0.32	0	0.11	0.035	0	0.015	0
*	$R(B \rightarrow K^* l^+ l^-) (1 \le q^2 \le 6 \text{ GeV}^2/c^2)$	0.24	0.1	0.09	0.03	0.03	0.01	0.01
*	$R(B \rightarrow D^* \tau v)$	6%	10%	3%	1.5%	3%	<1%	1%
*	$Br(B \rightarrow \tau v), Br(B \rightarrow K^* vv)$	24%,-	_	9%, 25%	4%, 9%	_	1.7%, 4%	_
	$Br(B_d \rightarrow \mu \mu)$	_	90%	_	_	34%	_	10%
	<u>Charm and τ</u>							
	$\Delta A_{\rm CP}({\rm KK}-\pi\pi)$	_	8.5×10-4	_	5.4×10-4	1.7×10-4	2×10-4	0.3×10-4
	$A_{\rm CP}({\rm D}{\rightarrow}\pi^+\pi^0)$	1.2%	_	0.5%	0.2%	_	0.1%	_
*	$Br(\tau \rightarrow e \gamma)$	<120×10-9	_	<40×10-9	<12×10-9	_	<5×10-9	_
*	$Br(\tau \rightarrow \mu \mu \mu)$	<21×10-9	<46×10-9	<3×10-9	<3×10-9	<16×10-9	<0.3×10-9	<5×10-9

arXiv: 1808.08865 (Physics case for LHCb upgrade II), PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book)

Sensitivity of VXD to systematic (weak mode) misalignments

