
RooFit: model serialization to
JSON and other news

Jonas Rembser (CERN, EP-SFT)

7 October 2022, Belle II Data Preservation Workshop

Introduction

○ RooFit: C++ library for statistical data analysis in ROOT
○ Model specification and fitting to data (baseline RooFit)
○ Implements common statistical tests (RooStats)
○ Includes tools to specify complex binned models (HistFactory)

○ Recent development focused on:
○ Performance boost (preparing for larger datasets of HL-LHC)
○ More user friendly interfaces and high-level tools

○ Topics of today:
○ Quick overview on recent RooFit highlights
○ RooFit model serialization to JSON/YAML
○ RooFit and automatic differentiation (AD)
○ Statistical model preservation

2

RooFit development areas

In which areas does RooFit evolve (besides bugfixes)?

○ Not all areas are covered with the same level of activity
○ Some areas started to be covered only recently (automatic differentiation, interoperability)

Vectorization Gradient parallelization

GPU Implementation Pythonizations

Higher-level interfaces

Fit precision and correctness

Targeted optimizations for
expensive workflows

Automatic differentiation Interoperability

Performance optimization User interface and experience

Testing and benchmarking

3

New RooFit computation backend

○ New computation backend for likelihood
fits (“BatchMode”) that makes use of
vectorization and other optimizations

○ Easy to enable in your fits:
○ pdf.fitTo(data, BatchMode(true))

○ Significant speedup of likelihood
minimization in most RooFit tutorials
(up to 7x, see plot on the right)
○ By next release (6.28) hopefully for

all of them
○ Please try it out and open GitHub

issues if your fit results are wrong or the
fit became slower

4

Status of RooFit’s BatchMode

○ Architecture-specific accelerator libraries for key functions
○ Optimal one loaded at runtime, given current architecture
○ Now also includes GPU version! Try it out with pdf.fitTo(model, BatchMode(“cuda”))

○ Multithreading via ROOT::EnableImplicitMT()

○ Huge speedup for unbinned fits with many events

○ For large computation
graphs with few events,
BatchMode still has
larger overhead than
recursive evaluation

○ Maybe this is exactly the kind
model class Belle II uses?

5

RooFit pythonizations

6

● PyROOT bindings more pythonic in 6.26
● Now you can for example:

○ use Python keyword arguments instead
of RooFit command arguments

○ pass around Python sets or lists instead of
RooArgSet or RooArgList

○ pass Python dictionaries to functions that
take std::map<>

○ implicitly convert floats to RooConstVar in
RooArgList/Set constructors

● All pythonizations are documented
● Some Pythonizations to help with C++/Python

lifetime issue
○ Still there are memory leaks when returning

owning pointers
● See also this ROOT meeting presentation

Example code from the rf316_llratioplot.py tutorial
showcasing the pythonizations:
Example code from the rf316_llratioplot.py tutorial
showcasing the pythonizations:

Create background pdf poly(x)*poly(y)*poly(z)
px = ROOT.RooPolynomial("px", "px", x, [-0.1, 0.004])
py = ROOT.RooPolynomial("py", "py", y, [0.1, -0.004])
pz = ROOT.RooPolynomial("pz", "pz", z)
bkg = ROOT.RooProdPdf("bkg", "bkg", [px, py, pz])

Create composite pdf sig+bkg
fsig = ROOT.RooRealVar("fsig", "signal fraction",
 0.1, 0., 1.)
model = ROOT.RooAddPdf("model", "model",
 [sig, bkg], [fsig])

data = model.generate((x, y, z), 20000)

Make plain projection of data and pdf on x observable
frame = x.frame(Title="Projection on X", Bins=40)
data.plotOn(frame)

https://root.cern/doc/master/group__RoofitPythonizations.html
https://indico.cern.ch/event/1061658/
https://root.cern/doc/master/rf316__llratioplot_8py.html
https://root.cern/doc/master/rf316__llratioplot_8py.html

RooFit with NumPy, Pandas, and RDF

7

● ROOT v6.26 new converters between
NumPy arrays/Pandas dataframes and
RooDataSet/RooDataHist

○ No translation from RooDataHist to
dataframe because histograms are in
general multi-dimensional

○ Tutorial in Python

● New RooRealVar.bins() function to get RooFit
bin boundaries as NumPy array

● Creating RooFit datasets from RDataFrame
○ Works for both RooDataSet and

RooDataHist
○ Weighted filling still needs to be

implemented
○ Tutorial in C++ and Python

from ROOT import RooRealVar, RooCategory, RooGaussian

x = RooRealVar("x", "x", 0, 10)
cat = RooCategory("cat", "cat",
 {"minus": -1, "plus": +1})

mean = RooRealVar("mean", "mean",
 5, 0, 10)
sigma = RooRealVar("sigma", "sigma",
 2, 0.1, 10)

gauss = RooGaussian("gauss", "gauss",
 x, mean, sigma)

data = gauss.generate((x, cat), 100)

df = data.to_pandas()

Example of exporting RooDataSet to Pandas:

https://root.cern.ch/doc/master/rf409__NumPyPandasToRooFit_8py.html
https://github.com/root-project/root/blob/master/tutorials/roofit/rf408_RDataFrameToRooFit.C
https://github.com/root-project/root/blob/master/tutorials/roofit/rf408_RDataFrameToRooFit.py

Parallelized gradient calculation

8

● For many parameters, most fitting time is
spent for the numeric gradient
computation (re-evaluation after varying
each parameter one at a time)

● Distributing the gradient calculation over
multiple processes is a very general way to
speed up fitting (see ACAT 2019 presentation)

● Gradient parallelization is part of ROOT 6.26
● It comes together with new likelihood

classes with improved performance for
parallelization over entries

Figure from the ACAT 2019 presentation
showcasing the scaling of the gradient
parallelization for an ATLAS Higgs combination fitMore info in this talk

from ICHEP 2022

https://indico.cern.ch/event/708041/contributions/3276177/
https://agenda.infn.it/event/28874/contributions/169205/

Motivation for RooWorkspace ⇄ JSON/YAML

○ The push towards publishing likelihoods is getting stronger

○ pyhf has been extremely successful in attracting users
○ important reason (among others): ability to define models in a declarative language

○ pyhf JSON is readable, editable, and feature-complete!
○ however, limited to HistFactory use-case

○ no “complicated” models, only stacks of homogeneously binned histograms in
non-overlapping regions

A round-trip-capable, human-readable declarative format for
statistical models was missing.

9

RooWorkspace ⇄ JSON/YAML

10

● Model-building tools require descriptive
languages to define the model

● JSON or YAML is a well-readable standard
industry format

● The new RooFit (6.26) includes a new
RooJSONFactoryWSTool to import/export
RooWorkspaces to JSON or YAML

● This can ease interoperability also with other
statistics frameworks such as pyhf an zfit

● Serialization standard referred to as HS3 (HEP
statistics serialization standard)

Example on the right: JSON for Gaussian
signal with RooArgusBG background

"pdfs": {
"signal": {

 "type": "Gaussian",
 "x": "mes", "mean": "sigmean", "sigma": "sigwidth"

},
"background": {

 "type": "ARGUS",
 "mass": "mes", "resonance": 5.291,
 "slope": "argpar", "power": 0.5

},
"model": {

 "type": "pdfsum",
 "summands": [
 "signal",
 "background"
],
 "coefficients": [
 "nsig",
 "nbkg"
],
 "tags": [
 "toplevel"
]

}
},
"variables": {

"mes": { "value": 5.25, "min": 5.2, "max": 5.3 },
"sigmean": { "value": -5.28, "min": 5.2, "max": 5.3 },
"nsig": { "value": 200, "min": 0, "max": 10000 },
"argpar": { "value": -20, "min": -100, "max": -1 },
"nbkg": { "value": 800, "min": 0, "max": 10000 }

}

More info in this talk
on the ROOT users
workshop 2022

https://github.com/root-project/root/tree/master/roofit/hs3
https://github.com/scikit-hep/pyhf
https://github.com/zfit/zfit
https://indico.fnal.gov/event/23628/contributions/240368/

The Implementation: RooJSONFactoryWSTool

○ Extensible system to manage import and
export of functions, pdfs and variables

○ Two-layer approach:
○ Possibility to plug in C++ code for

import/export of specific RooFit objects
○ For simpler classes, define mapping of

JSON keys to RooFit constructor
arguments (import expressions) or the
RooAbsProxies (export expressions)

○ More on how to do this in the doxygen page

Import Expressions Export Expressions

tool = ROOT.RooJSONFactoryWSTool(myworkspace)
tool.exportJSON(“myworkspace.json”)

ws = ROOT.RooWorkspace(“somename”)
tool = ROOT.RooJSONFactoryWSTool(ws)
tool.importJSON(“myworkspace.json”)

RooWorkspace to JSON:
JSON to RooWorkspace:

11

https://root.cern.ch/doc/master/classRooJSONFactoryWSTool.html
https://indico.cern.ch/event/1069804/contributions/4498699/attachments/2298649/3909430/wsfactoryexpressions.json
https://indico.cern.ch/event/1069804/contributions/4498699/attachments/2298649/3909429/wsexportkeys.json

Standardizing the top-level JSON content
Going beyond the RooWorkspace, a JSON workspace standard should fulfill these criteria:

1. An arbitrary number of likelihoods and models should be storable
2. Combinations of different likelihoods (binned and unbinned) should be very easy!
3. The JSON should be easily manipulable by different tools and also by hand

What can be written to the JSON should probably include:

○ PDFs
○ Functions
○ Likelihoods/loss functions
○ Data

Ongoing discussions with ATLAS users, pyhf and zfit developers to explore possibility for a
common standard, dubbed the HEP statistics serialization standard

This means the JSON format from the RooJSONFactoryWSTool is not stable yet
12

○ Parameters/parameter lists
○ Parameter “snapshots”
○ Metainfo
○ …?

https://gitlab.cern.ch/cburgard/hep-statistics-serialization-standard

Automatic differentiation (AD) in RooFit

○ Gradient of RooFit model essential for minimization
○ RooFit uses numeric derivatives, varying one parameter at the time
○ Using analytic gradients is much more efficient for many parameters
○ We can use automatic differentiation techniques to get these gradients

○ No code merged yet, but we investigate the following code towards AD:
○ C++ code generation form RooFit model to one C++ function and automatically

differentiate with clad (or other source-code transformation fools like Enzyme AD)

13

https://github.com/vgvassilev/clad
https://enzyme.mit.edu/

AD for binned likelihoods from HistFactory

16Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

Example binned likelihood with
one channel: Higgs to 4 leptons

Many binned likelihoods follow a similar pattern:

 product of Poisson terms constraints

HistFactory is a higher-level tool to build such likelihoods in RooFit.

Good model class for showing AD in RooFit:

● many parameters
● rich computation graph
● few normalization integrals

Preliminary Results

17Automatic Differentiation in ROOT - Garima Singh | 2nd MODE AD Workshop 14 Sept. 2022

An example histogram fitting model with 2 bins and 2 channels, with 3 samples per
channel. Based on the hf_001 example.

Explicit Computation Graphs: An Example HistFactory Model

https://root.cern/doc/master/hf001__example_8C.html

Preliminary Results

18

double nll(double *in)

{

 double nomGammaB1 = 400;

 double nomGammaB2 = 100;

 double nominalLumi = 1;

 double constraint[3]{RooPoisson::poisson(nomGammaB1, (nomGammaB1 * in[0])),

 RooPoisson::poisson(nomGammaB2, (nomGammaB2 * in[1])),

 RooGaussian::gauss(in[2], nominalLumi, 0.100000)};

 double cnstSum = 0;

 double x[2]{1.25, 1.75};

 double sig[2]{20, 10};

 double binBoundaries1[3]{1, 1.5, 2};

 double bgk1[2]{100, 0};

 double binBoundaries2[3]{1, 1.5, 2};

 double histVals[2]{in[0], in[1]};

 double bgk2[2]{0, 100};

 double binBoundaries3[3]{1, 1.5, 2};

 double weights[2]{122.000000, 112.000000};

 for (int i = 0; i < 3; i++) {

 cnstSum -= std::log(constraint[i]);

 }

// cont…

// cont..

 double mu = 0;

 double temp;

 double nllSum = 0;

 unsigned int b1, b2, b3;

 for (int iB = 0; iB < 2; iB++) {

 b1 = RooHistFunc::getBin(binBoundaries1, x[iB]);

 b2 = RooHistFunc::getBin(binBoundaries2, x[iB]);

 b3 = RooHistFunc::getBin(binBoundaries3, x[iB]);

 mu = 0;

 mu += sig[b1] * (in[3] * in[2]);

 mu += (bgk1[b2] * histVals[iB]) * (in[2] * 1.000000);

 mu += (bgk2[b3] * histVals[iB]) * (in[2] * 1.000000);

 temp = std::log((mu));

 nllSum -= -(mu) + weights[iB] * temp;

 }

 return cnstSum + nllSum;

}

Constraints defined as calls to
their respective ‘evaluate’s.

Constraint sum.

Translated RooProducts.

NLL

19

~5.5x speedup

Tested on ROOT v6.26.

Automatic Differentiation in RooFit

Performance comparison AD vs numerical differentiation on hf_001 inspired example

RooFit and analysis preservation

○ RooFit has a few things going for it in the analysis preservation department:
○ The RooWorkspace is widely used in the community
○ Few software dependencies (only ROOT, which has only few dependencies itself)
○ We make backwards compatibility a priority (...at least since a few years)
○ No hurdles for fixing preservation issues upstream (as it’s a HEP community project)

○ But there are also problems:
○ Model specification tightly connected with implementation
○ The correct schema evolution of all RooFit objects is a big burden

The JSON/YAML serialization and C++ code generation approach can be useful to
overcome these shortcomings!

Maybe we will have something
18

Summary

19

● RooFit is evolving steadily
○ Support and development from ROOT team at CERN and external contributors

● Highlights of the recent version 6.26 are the BatchMode and the Pythonizations
○ as well as the JSON serialization explained in more detail

● Status of the JSON to Workspace tool:
○ Support for most PDFs and functions, easily extensible by users
○ Standardization of JSON structure still in progress (HS3 project)

● Future developments will focus on automatic differentiation
○ Approach of differentiable C++ code generation could benefit analysis preservation
○ Still at early R & D stage, don’t expect much of this in upcoming ROOT 6.28 yet

Links

Recent RooFit presentations:

○ Talk at ACAT 2021
○ RooFit talk at the ROOT users workshop
○ RooFit talk at ICHEP 2022
○ Automatic differentiation in ROOT (September 2022)

To get more info on the JSON serialization:

○ The HEP statistics serialization standard GitLab repository
○ You can download the PDF as an artefact of the CI pipeline

○ The landing page for the JSON tool in the RooFit documentation
○ The RooFit tutorial that explains how to import a model from JSON
○ For developers: the RooFit HS3 README file explaining how to extended model support

https://indico.cern.ch/event/855454/contributions/4596763/
https://indico.fnal.gov/event/23628/contributions/240749/
https://agenda.infn.it/event/28874/contributions/169205/
https://indico.cern.ch/event/1145124/contributions/4948827/
https://gitlab.cern.ch/cburgard/hep-statistics-serialization-standard
https://gitlab.cern.ch/cburgard/hep-statistics-serialization-standard/-/pipelines
https://root.cern.ch/doc/master/classRooJSONFactoryWSTool.html
https://root.cern.ch/doc/master/rf515__hfJSON_8py.html
https://github.com/root-project/root/tree/master/roofit/hs3

