$B \rightarrow X_{\mu} \ell \nu$ Differential Branching Fractions

Lu Cao

Belle II Data Preservation Workshop, 7 Oct 2022

Data Preservation:

Measurement of Differential Branching Fractions of Inclusive $B \rightarrow X_{\mu} \ell \nu$ Decays

Belle: Phys. Rev. Lett. 127 (2021) 26, 261801

- Using full Belle dataset of 711 fb⁻¹
- Hadronic tagging with Neural Networks (~0.2-0.3% efficiency)

Measurement of Differential Branching Fractions of Inclusive $B \rightarrow X_{\mu} \ell \nu$ Decays

Belle: Phys. Rev. Lett. 127 (2021) 26, 261801

q²,

Using full Belle dataset of 711 fb⁻¹

DESY.

- Hadronic tagging with Neural Networks (~0.2-0.3% efficiency)
- Based on machine learning (BDT) to suppress backgrounds with 11 training features, e.g. MM²,#K[±], #K_s.
- Measure differential spectra of 6 kinematic variables in the phase space of $E_{I^B} > 1$ GeV:

Eι^B,

All MC shapes are normalised to 1.59 x 10⁻³ [Belle, PRD 104, 012008 (2021)]

Measurement of Differential Branching Fractions of Inclusive $B \rightarrow X_{\mu} \ell \nu$ Decays

Belle: Phys. Rev. Lett. 127 (2021) 26, 261801

q²,

Using full Belle dataset of 711 fb⁻¹

DESY.

- Hadronic tagging with Neural Networks (~0.2-0.3% efficiency)
- Based on machine learning (BDT) to suppress backgrounds with 11 training features, e.g. MM²,#K[±], #K_s.
- Measure differential spectra of 6 kinematic variables in the phase space of $E_{I^B} > 1$ GeV:

ΕΙ^Β,

All MC shapes are normalised to 1.59 x 10⁻³ [Belle, PRD 104 , 012008 (2021)]

Event Reconstruction

Background subtraction

Unfolding

Eff. & acc. correction

Differential BR & full experimental correlations

Further outcome based on measured spectra

Shortly on analysis details, focus on which data is preserved and why

- Reconstruct $B \rightarrow X \ell \nu$ decays and key kin. variables
- Apply all necessary selections to enhance signal significancy (e.g. BDT score)
- Strategy inherited from the partial BR measurement [Belle: Phys. Rev. D 104 (2021) 1, 012008]

Eff. & acc. correction

Differential BR & full experimental correlations

Further outcome based on measured spectra

Can fully assign each final state particle to either the tag or signal side

 \rightarrow Allows to reconstruct $X_{...}$

• Hadronic system *X*:

$$p_X = \sum_i (\sqrt{m_\pi^2 + |\mathbf{p_i}|^2}, \mathbf{p_i}) + \sum_i (E_i, \mathbf{k_i})$$

Reconstructed kinematic variables

• Missing mass squared: • Lep
$$MM^2 = \left(P_{Y(4S)} - P_{ ext{tag}} - P_{ ext{X}} - P_{\ell}
ight)^2$$
 q^2

otonic system:

- Fit M_X distribution and subtract background events from data
- Fit uncertainty and correlations fully propagated into bkg-subtracted spectra

DESY.

- Provide **direct** input for theory community:
 - Summed differential BRs & full correlations
 - 1st-3rd moments of each measured differential spectrum & full correlations

Crucial input for theoretical extraction of non-perturbative shape function & incl. |V_{ub}|

HepData Resources

13

HepData Resources

DESY.

Differential BR & Further outcome based full experimental Eff. & acc. correction on measured spectra correlations HEPData HEPData HEPData

HEPData Q Search HEPData Search				🚯 About 🔀 Submission Help 🗋 File Formats 🔿 Sign in
Q Browse all 🛿 Cao, L. et al.				Last updated on 2022-08-29 13:52 Lill Accessed 115 times 59 Cite JSO
< Hide Publication Information Measurement of Differential Branching Fractions of Inclusive $B o X_u \ell^+ \nu_\ell$ Decays	≵ Download All → ▼ Filter 50 data tables	Fig. 3 (top left) Top left panel of Fig	<u>10.17182/hepdata.131599.v1/t1</u> . 3	https://www.hepdata.ne
The Belle collaboration	Fig. 3 (top left) >	The measured differ	rential branching fractions as a function of the lepton energy in the	e B rest frame (E^B_ℓ).
Cao, L., Sutcliffe, W., Van Tonder, R., Bernlochner, F.U., Adachi, I., Aihara, H., Asner, D.M., Aushev, T., Ayad, R., Babu, V. Phys.Rev.Lett. 127 (2021) 261801, 2021. https://doi.org/10.17182/hepdata.131599	Top left panel of Fig. 3 10.17182/hepdata.131599.v1/t1 The measured differential branching fractions as a function of the lepton energy in the B rest frame (E_{ℓ}^{B}).	observables SIG/DEIB		reactions ♥ B> X_u l+ nu_l
Journal INSPIRE Resources	Fig. 3 (top right) >	E^B_ℓ [GeV]	$\texttt{DSIG/D}E^B_\ell$	Visualize
Abstract (data abstract) The first measurements of differential branching fractions of inclusive semileptonic $B \to X_u \ell^+ \nu_\ell$ decays are performed using the full Belle data set of 711 fb ⁻¹ of integrated luminosity at the $\Upsilon(4S)$ resonance and for $\ell = e, \mu$. With the availability of these measurements, new avenues for future shape-function model-independent determinations of the Cabibbo- Kobayashi-Maskawa matrix element $ V_{ub} $ can be pursued to gain new insights in the existing tension with respect to exclusive determinations. The differential branching fractions are reported as a function of the lepton energy, the four-momentum-transfer squared, light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting the backgrounds from semileptonic $B \to X_c \ell^+ \nu_\ell$ decays and	10.17182/hepdata.131599.v1/t2 The measured differential branching fractions as a function of the four-momentum-transfer squared of the B to the X_u system q^2 . Fig. 3 (middle left) Middle left panel of Fig. 3 10.17182/hepdata.131599.v1/t3 The measured differential branching fractions as a function of the invariant hadronic mass of the X_u system (M_X) . Fig. 3 (middle right) Middle right panel of Fig. 3 10.17182/hepdata.131599.v1/t3 The measured differential branching fractions as a function of the invariant hadronic mass of the X_u system (M_X) . Fig. 3 (middle right) Middle right panel of Fig. 3 10.17182/hepdata.131599.v1/t4 The measured differential branching fractions as a function of the invariant hadronic mass squared of the X_u system (M_X^2) .	1.0 - 1.1	0.00033783 ±0.00018357 stat ±0.00018818 syst	0.0018-
		1.1 - 1.2	0.00041072 ±0.00016211 stat ±0.00019656 syst	
		1.2 - 1.3	0.00064222 ±0.00014802 stat ±0.0002179 syst	
		1.3 - 1.4	0.00076557 ±0.00015075 stat ±0.0002393 syst	
		1.4 - 1.5	0.00091303 ±0.00015576 stat ±0.00025088 syst	
		1.5 - 1.6	0.0011769 ±0.00015388 stat ±0.00025575 syst	
		1.6 - 1.7	0.0011987 ±0.00015629 stat ±0.00023759 syst	
		1.7 - 1.8	0.0012986 ±0.00015855 stat ±0.00022699 syst	E \ell^B [GeV]
		1.8 - 1.9	0.0016281 ±0.00015298 stat ±0.00024659 syst	Sum errors 🗹 Log Scale (X) 🗌 Log Scale (Y) 🗌
		1.9 - 2.0	0.0016831 ±0.00013761 stat ±0.00025329 syst	

Hands-on Example 1D, 2D, binned, unbinned

- **1D**: yields, efficiency, differential branching fractions, moments, etc.
- **2D**: all matrices, i.e. covariance, correlation, migration
- **Binned**: differential branching fractions, efficiency, migration, etc. \bullet
- **Unbinned**: moments (as function of threshold), matrix given with elements' index, etc.

Hands-on Example **1D**, **2D**, **binned**, **unbinned**

- **1D**: yields, efficiency, differential branching fractions, moments, etc.
- **2D**: all matrices, i.e. covariance, correlation, migration
- **Binned**: differential branching fractions, efficiency, migration, etc.
- **Unbinned**: moments (as function of threshold), matrix given with elements' index, etc.

ALL filled & provided as flat tables HEPData

HepData tutorial: https://github.com/HEPData/hepdata_lib/tree/master/examples

1. Define table title, location, etc.

Hands-on Example 1D binned: dB/dq^2

import hepdata_lib
from hepdata_lib import Submission, Table, Variable, Uncertainty

submission = Submission()

```
submission.read_abstract("./B1_BtoXulnu_PRL/abstract_hepdata.txt")
submission.add_link("Publication website", "https://journals.aps.org/prl.
submission.add_link("arXiv", "https://arxiv.org/abs/2107.13855")
submission.add_record_id(1895149, "inspire")
```

define table title, location, etc. table_fig3b = Table("Fig. 3 (top right)") table_fig3b.description = "The measured differential branching fractions as a function of to table_fig3b.location = "Top right panel of Fig. 3" table_fig3b.keywords["observables"] = ["DSIG/DQ**2"] table_fig3b.keywords["reactions"] = ["B --> X_u l+ nu_l"]

```
# define 1D axis
x_fig3b = Variable "$q^{2}$", is_independent=True, is_binned=True, units="GeV$^2$")
x_fig3b.values = list(zip(q2_unfold_bin[:-1], q2_unfold_bin[1:]))
table_fig3b.add_variable(x_fig3b)
```

fill central result
data_fig3b = Variable("DSIG/D\$q^{2}\$", is_independent=False, is_binned=False, units="")
data_fig3b.values = dBF_q2['dBF_cen']/get_bin_widths(q2_unfold_bin)

fill stat. uncertainty
unc_data_fig3b_stat = Uncertainty("stat", is_symmetric=True)
unc_data_fig3b_stat.values = dBF_q2['dBF_err_stat']/get_bin_widths(q2_unfold_bin)
data_fig3b.add_uncertainty(unc_data_fig3b_stat)

```
# fill syst. uncertainty
unc_data_fig3b_syst = Uncertainty("syst", is_symmetric=True)
unc_data_fig3b_syst.values = dBF_q2['dBF_err_sys']/get_bin_widths(q2_unfold_bin)
data_fig3b.add_uncertainty(unc_data_fig3b_syst)
table_fig3b.add_variable(data_fig3b)
```


Fig. 3 (top right) 10.17182/hepdata.131599.v1/t2

Top right panel of Fig. 3

The measured differential branching fractions as a function of the four-momentum-transfer squared of the B to the X_u system q^2 .

observables

DSIG/DQ**2

$q^2 [{\rm GeV^2}]$	${\sf DSIG}/{\sf D}q^2$
0.0 - 2.0	0.00012158 ±2.0314e-05 stat ±3.3209e-05 syst
2.0 - 4.0	0.00011361 ±1.5535e-05 stat ±3.1849e-05 syst
4.0 - 6.0	0.00012413 ±1.6196e-05 stat ±2.7661e-05 syst
6.0 - 8.0	0.00012988 ±1.5083e-05 stat ±2.1042e-05 syst
8.0 - 10.0	0.00010926 ±1.3397e-05 stat ±1.6234e-05 syst
10.0 - 12.0	8.2558e-05 ±1.0624e-05 stat ±1.2165e-05 syst
12.0 - 14.0	6.0146e-05 ±7.4884e-06 stat ±1.0255e-05 syst
14.0 - 16.0	3.6742e-05 ±4.8875e-06 stat ±8.6703e-06 syst
16.0 - 18.0	2.9185e-05 ±3.4902e-06 stat ±8.378e-06 syst
18.0 - 20.0	1.8975e-05 ±2.2995e-06 stat ±5.4628e-06 syst
20.0 - 22.0	5.7594e-06 ±9.0366e-07 stat ±2.3605e-06 syst
22.0 - 26.5	2.0731e-06 ±4.1392e-07 stat ±5.2062e-07 syst

Deselect variables or hide different error bars by clicking on them.

https://www.hepdata.ne

Hands-on Example

2D unbinned: full experimental correlations of differential spectra

- Giant correlations among all kin. variables
- In this case, matrix element is given with bin index instead of **bin range** (due to numerical overlap for various variables)

```
# define table title, location, etc.
table fig8 = Table("Fig. 8")
table_fig8.description = "The full experimental (statistical and systematical) correlations of the
table fig8.keywords["reactions"] = ["B --> X u l+ nu l"]
# define 2D X-axis
x = Variable("Element index (X)", is_independent=True, is binned=False)
x.values = get_2Dbinedges(np.linspace(0,59,60),"X", binindex=True)
# define 2D Y-axis
y = Variable("Element index (Y)", is_independent=True, is_binned=False)
y.values = get 2Dbinedges(np.linspace(0,59,60), "Y", binindex=True)
# fill matrix elements
correlation_full = Variable("Correlation coefficient", is_independent=False, is_binned=False)
correlation full.values = giant_cor_tot.transpose().reshape(len(giant_cor_tot)**2)
table fig8.add variable(x)
table fig8.add variable(y)
table fig8.add variable(correlation full)
submission.add_table(table_fig8)
```

Fig. 8 10.17182/hepdata.131599.v1/t32

Example location

The full experimental (statistical and systematical) correlations of the differential branching fractions are shown. The matrix elements are ordered for M_X , M_X^2 , q^2 , E_ℓ^B , P_+ and P_- .

1.0

reactions

🗞 B --> X_u l+ nu_l

Element index (X)

0.0

Showing 50 of 3600 values

Show All 3600 values

Correlation coefficient

Visualize

0.0	1.0	-0.15023
0.0	2.0	-0.046279
0.0	3.0	0.078509
0.0	4.0	0.050481
0.0	5.0	0.067942
0.0	6.0	0.053793
0.0	7.0	0.029232
0.0	8.0	0.36972
0.0	9.0	0.013695
0.0	10.0	0.090197
0.0	11.0	0.036792
0.0	12.0	0.03691

Element index (Y)

0.0

https://www.hepdata.ne

Hands-on Example 2D binned: migration matrix

define table title, location, etc. table_mig_q2 = Table("Fig. 5 (middle right)") table_mig_q2.description = "Migration matrix of \$q^2\$ [in %]." table_mig_q2.location = "Middle right panel of Fig. 5" table_mig_q2.keywords["reactions"] = ["B --> X_u l+ nu_l"]

define 2D X-axis

```
x_mig_q2 = Variable("True $q^2$ bin", is_independent=True, is_binned=True, units="GeV$^2$")
x_mig_q2.values = get_2Dbinedges(q2_unfold_bin,"X")
```

define 2D Y-axis
y_mig_q2 = Variable("Reco. \$q^2\$ bin", is_independent=True, is_binned=True, units="GeV\$^2\$")
y_mig_q2.values = get_2Dbinedges(q2_unfold_bin,"Y")

fill matrix elements

```
data_mig_q2 = Variable("Migration matrix", is_independent=False, is_binned=False, units="%")
data_mig_q2.values = 100*mig_q2['nominal_migration_matrix'].transpose().reshape(len(mig_q2['nominal_migration_matrix'])
```

table_mig_q2.add_variable(x_mig_q2)
table_mig_q2.add_variable(y_mig_q2)
table_mig_q2.add_variable(data_mig_q2)

Tutorial notebook: <u>https://stash.desy.de/users/lcaocn/repos/hepdata_example/browse</u>

DESY.

Fig. 5 (middle right) 10.17182/hepdata.131599.v1/t20

Middle right panel of Fig. 5

Migration matrix of q^2 [in %].

reactions

🔖 B --> X_u l+ nu_l

Showing 50 of 144 values

True q^2 bin [GeV 2]	Reco. q^2 bin [GeV 2]	Migration matrix [%]
0.0 - 2.0	0.0 - 2.0	90.774
0.0 - 2.0	2.0 - 4.0	7.7856
0.0 - 2.0	4.0 - 6.0	0.7107
0.0 - 2.0	6.0 - 8.0	0.27675
0.0 - 2.0	8.0 - 10.0	0.15665
0.0 - 2.0	10.0 - 12.0	0.070682
0.0 - 2.0	12.0 - 14.0	0.22555
0.0 - 2.0	14.0 - 16.0	0.0
0.0 - 2.0	16.0 - 18.0	0.0
0.0 - 2.0	18.0 - 20.0	0.0
0.0 - 2.0	20.0 - 22.0	0.0
0.0 - 2.0	22.0 - 26.5	0.0
2.0 - 4.0	0.0 - 2.0	9.5878

Show All 144 values

Visualize

https://www.hepdata.ne

