GRL status and plan 2022/11/23 T.Koga

GRL status and plan in LS1 -Hardware transition of UT3→UT4, LVDS extended UT4

-CDC-TOP matching

-Neural network implementation

-Short tracking upgrade (Yun-Tsung's talk)

GRL UT4 commissioning status

-Report at last B2GM (in backup)

-GRL is updated with UT4 VU080, same core logic with UT3 -UT4 installed to vmetrg18. reconnect optical cables from UT3 GRL. -named "grl2" on btrgsrv0 temporary -UT3 GRL is still kept in Ehut.

-Commissioning is done with cosmic
-Trigger rate is consistent with UT3
-DQM is consistent with UT3
-Stable link

-Remained Tasks:

- -Need to check with UT4 GDL
- -Need to check more bits with KLM and TOP ON
- -Update of optical transceiver speed

UT4GRL task: transceiver speed

- -Transceiver speed can be increased for UT4 of 2D, ETM, GDL, TOP, TSF
 -latency should be reduced (bandwidth should be increased too)
 -GTY 12Gbps has been operated stably in 2022ab, TSF->2D.
 New trial for GTH.
- -I would like to update them during LS1.
- Can Nakazawa-san, Unno-san, and Tianping help to modify your FW at January, when Ehut will be ON at next time?

GTY	Module	speed (Gbps)	encode/ decode	GTH Module		speed (Gbps)	encode/ decode
GTY0	2D (Koga)	5.5->12	64b66b	GTH0	TOP1(Tianping)	5.0->12	8b10b->64b66b
GTY1	3D	5.5	64b66b	GTH1	TOP2(Tianping)	5.0->12	8b10b->64b66b
GTY2	NN	5.5	64b66b	GTH2	TSF0(Koga)	5.0->12	8b10b->64b66b
GTY3	ETM (Unno)	5.5->12	64b66b	GTH3	TSF2(Koga)	5.0->12	8b10b->64b66b
GTY4	KLM	5.5	64b66b	GTH4	TSF4(Koga)	5.0->12	8b10b->64b66b
GTY5	GDL (Nakazawa)	5.5->12	64b66b	GTH5	TSF1(Koga)	5.0->12	8b10b->64b66b
GTY6				GTH6	TSF3(Koga)	5.0->12	8b10b->64b66b
GTY7				GTH7	B2L		

UT4GRL task: new bit map GRL->GDL with LVDS

-Because the number of LVDS port is 2(4) with UT4(UT3), need to reduce the number of bits. Now keep old bitmap without LVDS C.

-New bit map: <u>https://confluence.desy.de/pages/viewpage.action?pageId=75106458</u>

-Rate etc. should be checked with UT4 GDL.

LVDS	bit content position		A	21		
A	0	iecl_1	#TSF0.1.2-Endcap ECL matching>1	А	22	
A	1		cluster_b2b_1to5	A	23	
A	2		trkcluster_b2b_1to5	A	24	
A	3		samehem	A	25	
A	4		opphem		26	
A	5		pulse of # of matched clusters (2D-ECL) = 1	<u>^</u>	20	
A	6		pulse of # of matched clusters (2D-ECL) = 2	A	27	
A	7		pulse of # of matched clusters (2D-ECL) = 3	A	28	
A	8		pulse of # of matched clusters (2D-ECL) > 3	Α	29	i2io
A	9		pulse of # of matched 2GeV clusters (2D-ECL) = 1	A	30	typ
A	10		pulse of # of matched 2GeV clusters (2D-ECL) = 2	A	31	
A	11		b2b_1to7: Opening angle of 2 tracks from	В	0	
4	12		cdc open90	В	1	
A	13		nulse of # of matched TOP slots (2D-TOP) = 1	В	2	
A	14		nulse of # of matched TOP slots (2D-TOP) = 2	в	з	
A	15		pulse of # of matched TOP slots (2D-TOP) = 3	в	4	
A	16		pulse of # of matched TOP slots (2D-TOP) > 3	в	5	
A	17		pulse of # of matched KLM sectors (2D-KLM) = 1	в	6	
A	18		pulse of # of matched KLM sectors (2D-KLM)	в	7	
				в	8	
A	19		EKLM) = 1	в	9	
A	20		pulse of # of matched KLM sectors (short- ELM) > 1	в	10	

pulse of N_track = 1	в	11	fwd_s	#forward short track>0
pulse of N_track = 2	в	12	bwd_s	#backward short track >0
pulse of N_track = 3	В	13	f2f30	open30, full-to-full
pulse of N_track > 3	В	14	s2s30	open30, short-to-short
pulse of # of short track = 1	В	15		open30, short-to-full
pulse of # of short track = 2	В	16		TSF0,1,2 b2b
pulse of # of short track = 3	в	17	typ4	pulse of # of NN veto cut track = 1 pulse of NN single track p>0.4GeV
pulse of # of short track > 3	в	18	typ5	pulse of # of NN veto cut track = 2 pulse of NN single track p>0.5GeV
TSF1 b2b TSF0,1,2 vs TSF0,1,2 open	В	19	typ6	pulse of # of NN veto cut track = 3
TSF2 b2b pulse of NN single track				pulse of NN single track p>0.6GeV
pulse of # of 3D z0 cut track = 1	В	20		pulse of # of NN veto cut track > 3
pulse of # of 3D z0 cut track = 2	В	21	ti	TSF0,1,2 coincidence
pulse of # of 3D z0 cut track = 3	В	22	i2fo	TSF0,1,2 coincidence vs ft open90
nulse of # of 3D z0 cut track > 3	В	23	secl	short-Endcap ECL matching
	В	24	iecl_0	#TSF0.1.2-Endcap ECL matching>0
pulse of # of NN z0 cut track = 1	в	25	eclekim	ECL-EKLM matching
pulse of # of NN z0 cut track = 2	в	26		st vs st b2b_1to5
pulse of # of NN z0 cut track = 3	в	27		st vs st open90
pulse of # of NN z0 cut track > 3	В	28		st vs ft b2b_1to5
pulse of reduced N_track = 1	В	29		st vs ft open90
pulse of reduced N_track = 2	в	30		total matched bhabha cluster in 3 regions, N = 1
pulse of reduced N_track = 3	В	31		total matched bhabha cluster in 3 regions, N
pulse of reduced N_track > 3				>1

5

Transition to LVDS extended UT4

-LVDS extended UT4 will be produced at next year for GRL and GDL

-Additional 32x3 LVDS port with a new boards

-It is possible to keep and send more bits

-GRL and GDL will be updated with the LVDS extended UT4 during LS1 if time allows.

CDC-TOP matching

- -TOPTRG and GRL FW will be modified for track matching
- -matching itself has been done successfully on GRL since 2019, with <u>~90% efficiency with dimuon</u>
- -matching information will be newly used for timing decision

7

TOPTRG->GRL data format

-Data format from Tianping, with 5Gbps on GTH0,1 (256bits/127MHz)

-I make a table in this time. Is this OK? More bits possible with 12Gbps. GTH0, slot0-7(same as GTH1, slot8-15)

bit	7	6	5	4	3	2	1	0					
127-120	t0 activate f	lag (1bit × 8 slc	t=8bits, 127-12	20)									
119-112	#of hits (8b	its × 8 slot=64b	its, 119-56)										
111-104													
103-96													
95-88													
87-80													
79-72													
71-64													
63-56													
55-48	clock count	er (10bits, 56-4	5)										
47-40			slot t0 (6bit	s × 8slot=48bits	, 47-0)								
39-32													
31-24													
23-16													
15-8													
7-0													
+	send additio	onal 10bits for v	alidation with	>5Gbps									

New CDC-TOP matching logic on GRL

- -Modification (red) of logic on GRL from Koga
- -Better to align the hit timing according to estimated t0 on TOPTRG, if latency allows

Neural network simulation

-Neural network on GRL to judge signal and BG with all subtrigger inputs

-Junhao is performing R&D with simulation -it looks good signal and BG identification for tau events -getting close to optimization

Neural network with vivado HLS

-Nomaru-san, a new student from Tokyo University, is recently playing to implement neural network on FPGA with Vivado HLS

11

- -with help of Yu Nakazawa-san
- -IP core will be generated by python automatically with <u>example code on git from ATLAS workshop</u> to identify jet pattern

Neural network with vivado HLS

- -Nomaru-san, a new student from Tokyo University, is recently playing to implement neural network on FPGA with Vivado HLS
- -with help of Yu Nakazawa-san
- -IP core will be generated by python automatically with example code on git from ATLAS workshop to identify jet pattern
- ->plan to optimize ecltaub2b with machine learning, stay tuned

Summary of GRL status and plan in LS1

- -Hardware transition of UT3→UT4, LVDS extended UT4 ->check with ,KLM, TOP, UT4 GDL
- ->speed up optical transmission with ETM, GDL, TOP, CDC2D ->LVDS extended UT4

-CDC-TOP matching ->update data format and firmware

Neural network implementation
 ->simulation study by Junhao
 ->Vivado HLS by Nomaru-san

Plan in LS2 and after

-There is no big plan of GRL upgrade in LS2 and after for now

- -List of idea for brainstorming
 - -Transition to UT5
 - -more resource and high speed link is possible
 - -neural net with vivado
 - -combine GRL and GDL on single FPGA

-3D track matching of CDC-ECL,TOP,KLM
-BG reduction performance should be improved
-for now, it is impossible due to latency of 3D tracks from NN and 3D

-Short tracking with full wires with ADC and TDC
-with new CDCFE (even with present CDCFE??)
-all wires inside TSF, or "TSF less" tracking
-we can measure |z| position to improve BG rejection

backup

Present CDC-TOP matching logic on GRL

Present CDC-TOP matching logic on GRL

17

-Make ϕ map of CDC 2D track and TOP hit

-φ is divided in 16 slots

- -CDC ϕ is extrapolated to TOP with pt curve
- -If ϕ map of CDC and TOP have hits in the same slot, judged as matched
- -Count the number of matched CDC-TOP tracks and send it to GDL

-input bit name: cdctop_0-3

Present TOPTRG->GRL data format

-Present bit map with 128bits/127MHz (5Gbps × 4lane) -totally 78 spare bits

bit	7	6	5	4	3	2	1	0					
127-120	clock co	ock counter											
119-112				hit flag	slot hit map								
111-104													
103-96					b2b	spare							
95-88													
87-80							combi	ned t0					
79-72													
71-64													

Present TOPTRG->GRL data format

-Present bit map with 128bits/127MHz (5Gbps × 4lane) -totally 78 spare bits

bit	7	6	5	4	3	2	1	0					
63-56	spare(se	pare(segment number, not used anymore)											
55-48													
47-40													
39-32													
31-24													
23-16													
15-8													
7-0													

GRL UT4 commissioning

-Report at last B2GM

-GRL is updated with UT4 VU080 -UT4 installed to vmetrg18. reconnect optical cables from UT3 GRL.

-named "grl2" on btrgsrv0 temporary

-UT3 GRL is still kept in Ehut.

-Commissioning is done with cosmic
-Trigger rate is consistent with UT3
-DQM is consistent with UT3
-Need to check more bits with KLM and TOP before next physics run

UT4 GRL logic change

-No core logic is changed

-To avoid compile error, one of short track source code is modified -trigger rate counter is added on VME to monitor all output bit rate

-TOP module and interface modules of VME, OPT, B2L are modified with library

-The latest code is on svn: UT4/FPGA/GRL/GRL_v1.0

-TOPTRG interface will be modified after UT4 toptrg be ready.

UT4 GRL: channel configuration and transceiver speed

-All cables were replaced from UT3 GRL to UT4 GRL -LEMO, RJ45, OPT, Jtag, LVDS (A and B only) -no change of optical speed for now (can be speed up) -GTY: 127MHz, GTH: 254MHz reference clock

GTY	GTH	speed	GTH		speed
GTY0	2D		GTH0	TOP1	
GTY1	3D		GTH1	TOP2	
GTY2	NN		GTH2	TSF0	
GTY3	ETM		GTH3	TSF2	
GTY4	KLM		GTH4	TSF4	
GTY5	GDL		GTH5	TSF1	
GTY6			GTH6	TSF3	
GTY7			GTH7	B2L	

Output rate check

-All input bit rates from GRL are checked on GDL between UT3 GRL and UT4 GRL with cosmic, except for

- -bits on LVDS_C
- -TOP and KLM related bits (HV OFF)
- -low rate bits with cosmic

-Rates are consistent between UT3 and UT4.

DQM

-After a few bug fixes, B2L works with UT4 GRL -GTH, 254MHz reference clock

-Plots on DQM are consistent with UT3 GRL.->Latency will be checked more carefully.->Offline analysis will be performed.

new bit map GRL->GDL with LVDS

-Because the number of LVDS port is 2(4) with UT4(UT3), need to reduce the number of bits. Now keep old bitmap without LVDS_C.

-New bit map: https://confluence.desy.de/pages/viewpage.action?pageId=75106458

LVDS	bit position		content			1					
A	0	iecl_1	#TSF0.1.2-Endcap ECL matching>1	A	21		pulse of N_track = 1	в	11	fwd_s	#forward short track>0
Α	1		cluster_b2b_1to5	A	22		pulse of N_track = 2	в	12	bwd_s	#backward short track >0
A	2		trkcluster_b2b_1to5	A	23		pulse of N_track = 3	в	13	f2f30	open30, full-to-full
A	3		samehem	A	24		pulse of N track > 3	в	14	s2s30	open30, short-to-short
A	4		opphem		25		pulse of # of short track = 1	В	15		open30, short-to-full
A	5		pulse of # of matched clusters (2D-ECL) = 1		25			в	16		TSF0,1,2 b2b
A	6		pulse of # of matched clusters (2D-ECL) = 2	A	26		pulse of # of short track = 2	в	17	typ4	pulse of # of NN veto cut track = 1
A	7		pulse of # of matched clusters (2D-ECL) = 3	A	27		pulse of # of short track = 3				pulse of NN single track p>0.4GeV
A	8		pulse of # of matched clusters (2D-ECL) > 3	A	28		pulse of # of short track > 3	В	18	typ5	pulse of # of NN veto cut track = 2 pulse of NN single track p>0.5GeV
A	9		pulse of # of matched 2GeV clusters (2D-ECL) = 1	A	29	i2io	TSF1 b2b TSF0,1,2 vs TSF0,1,2 open	в	19	typб	pulse of # of NN veto cut track = 3
A	10		pulse of # of matched 2GeV clusters (2D-ECL)	A	30	typ	T5F2 b2b pulse of NN single track				pulse of NN single track p>0.6GeV
			= 2	A	31		pulse of # of 3D z0 cut track = 1	В	20		pulse of # of NN veto cut track > 3
A	11		b2b_1to7: Opening angle of 2 tracks from	в	0		pulse of # of 3D z0 cut track = 2	В	21	ti	TSF0,1,2 coincidence
	12		140 10 180		1		· pulse of # of 2D =0 cut track = 2	В	22	i2fo	TSF0,1,2 coincidence vs ft open90
	12			-	-			В	23	secl	short-Endcap ECL matching
A	15		pulse of # of matched TOP slots (2D-TOP) = 1	в	2		pulse of # of 3D 20 cut track > 3	в	24	iecl_0	#TSF0.1.2-Endcap ECL matching>0
A	14		pulse of # of matched TOP slots (2D-TOP) = 2	В	3		pulse of # of NN z0 cut track = 1	в	25	eclekim	ECL-EKLM matching
A	15		pulse of # of matched TOP slots (2D-TOP) = 3	в	4		pulse of # of NN z0 cut track = 2	В	26		st vs st b2b_1to5
A	16		pulse of # of matched TOP slots (2D-TOP) > 3	в	5		pulse of # of NN z0 cut track = 3	в	27		st vs st open90
A	17		pulse of # of matched KLM sectors (2D-KLM) = 1	в	6		pulse of # of NN z0 cut track > 3	В	28		st vs ft b2b_1to5
A	18		pulse of # of matched KLM sectors (2D-KLM)	в	7		pulse of reduced N_track = 1	в	29		st vs ft open90
A	19		> 1 pulse of # of matched KLM sectors (short-	в	8		pulse of reduced N_track = 2	В	30		total matched bhabha cluster in 3 regions, N = 1
			EKLM) = 1	в	9		pulse of reduced N_track = 3	в	31		total matched bhabha cluster in 3 regions. N
A	20		pulse of # of matched KLM sectors (short- ELM) > 1	в	10		pulse of reduced N_track > 3				>1

resource usage

-with B2L

GT

0

6%

25%

50

Utilization (%)

25

BUFG -

MMCM

HARDWARE MANAGER - localhost/xilinx_tcf/Xilinx/000014d2443401

Implemented Power Report

75

81%

100

2 X

GRL UT4: plan in LS1

-Remained commissioning items of UT4 GRL

-KLMTRG

-TOPTRG

-GRL->UT4GDL with new bit map

-low rate bits with cosmic

-design, implementation, comissioning of NN logic on GRL

new bit map GRL->GDL with LVDS ²⁸ -Because the number of LVDS port is 2(4) with UT4(UT3), need to reduce the number of bits

-Original bit map: https://confluence.desy.de/pages/viewpage.action?pageId=75106458

LVDS	position		content							
Α	0	iecl_1	cluster_b2b_1to9 #TSF0.1.2- Endcap ECL matching > 1	A	20 → 18	pulse of # of unmatched 1	в	0		pulse of # of matched TOP slots (2D-TOP) = 1
						GeV clusters (2D-ECL) = 1				
^	1		cluster_b2b_1to7	Α	21 → 19	pulse of # of unmatched 1	в	1		pulse of # of matched TOP slots (2D-TOP) = 2
A	2		cluster_b2b_1to5			GeV clusters (2D-ECL) = 2				
-	3		cluster_b2b_1to3	A	22 → 20	pulse of # of unmatched 1		2		slots (2D-TOP) = 3
	4		trkcluster b2b 1to9			GeV clusters (2D-ECL) = 3	в	3		pulse of # of matched TOP
	5		trkcluster b2b 1to7	A	23 → 21	pulse of # of unmatched 1				slots (2D-TOP) > 3
A	6		trkcluster b2b 1to5			GeV clusters (2D-ECL) > 3	в	4		pulse of # of matched KLM sectors (2D-KLM) = 1
	-			A	24 → 22	pulse of # of unmatched 2				
^	7		trkcluster_b2b_1to3			GeV clusters (2D-ECL) = 1	в	5		pulse of # of matched KLM sectors (2D-KLM) > 1
A	8		samehem	Α	25 → 23	pulse of # of unmatched 2	-			
Α	9		opphem			GeV clusters (2D-ECL) = 2	8	0		sectors (short-EKLM) = 1
Α	10		pulse of # of matched	A	26 → 24	pulse of # of unmatched 2	в	7		pulse of # of matched KI M
			clusters (2D-ECL) = 1			GeV clusters (2D-ECL) = 3	-			sectors (short-ELM) > 1
Α	11		pulse of # of matched	Α	27 → 25	pulse of # of unmatched 2	в	8		pulse of <u>N_track</u> = 1
			clusters (2D-ECL) = 2			GeV clusters (2D-ECL) > 3	в	9		pulse of <u>N_track</u> = 2
A	12		pulse of # of matched	Α	26	b2b_1to9: Opening angle		10		pulse of N track = 2
			clusters (2D-ECL) = 3			of 2 tracks from 130 to 180		10		pulse of <u>M_Rack</u> = 5
Α	13		pulse of # of matched		27	h 2h du 7. On an ing an du	в	11		pulse of <u>N_track</u> > 3
			clusters (2D-ECL) > 3	A	2/	of 2 tracks from 140 to 180	в	12		pulse of # of short track = 1
Α	14		pulse of # of matched 2(GeV clusters (2D, 5(1) = 1	Δ	28	h2h 1to5: Opening angle	в	13		pulse of # of short track = 2
			2dev clusters (2D-ECL) = 1		20	of 2 tracks from 150 to 180	R	14		nulse of # of short track = 3
Α	15		pulse of # of matched				-			pulse of # of short dack = 5
			2GeV clusters (2D-ECL) = 2	Α	29	b2b_1to3: Opening angle	В	15		pulse of # of short track > 3
A	16		pulse of # of matched			of 2 tracks from 160 to 180	в	16	i2io	TSF1 b2b TSF0,1,2 vs
			2GeV clusters (2D-ECL) = 3	A	30	cdc_open90				15F0,1,2 open
A	17		pulse of # of matched				в	17	typ	TSF2 b2b pulse of NN
			2GeV clusters (2D-ECL) > 3	A	31	TSF0 b2b				single track

²⁹ -Because the number of LVDS port is 2(4) with UT4(UT3), need to reduce the number of bits

-Original bit map: https://confluence.desy.de/pages/viewpage.action?pageId=75106458

в	18		pulse of # of 3D z0 cut	С	0	f2f30	open30, full-to-full		18	st vs st h2h 1to3	
			track = 1	с	1	s2s30	open30, short-to-short	·		M 10 M 00021100	
в	19		pulse of # of 3D z0 cut	с	2		open30, short-to-full	С	19	st vs st b2b_1to5	
			track = 2	с	3		TSF0,1,2 b2b	с	20	st vs st open90	
В	20		pulse of # of 3D z0 cut track = 3	с	4	typ4	pulse of # of NN veto cut track = 1 pulse of NN single track	€	21	<u>st vs ft b2b_1to3</u>	
в	21		pulse of # of 3D z0 cut				p>0.4GeV	с	22	st vs ft b2b_1to5	
			track > 3		2	typs	track = 2	с	23	<u>st</u> vs <u>ft</u> open90	
В	22		pulse of # of NN z0 cut track = 1				p>0.5GeV	с	24	forward endcap, non-	
				C	6	typб	pulse of # of NN veto cut track = 3			matched bhabha cluster	
в	23		pulse of # of NN z0 cut track = 2	pulse of # of NN z0 cut track = 2				pulse of NN single track p>0.6GeV	с	25	backward endcap, non-
в	24		pulse of # of NN z0 cut	с	7		pulse of # of NN veto cut			matched <u>bhabha</u> cluster	
		track = 3	track = 3				track > 3	с	26	forward endcap, matched	
в	25		pulse of # of NN 70 cut	C	8	<u>ti</u>	TSF0,1,2 coincidence			st vs bhabha cluster	
2			track > 3	C	9	i2fo	TSF0,1,2 coincidence vs <u>ft</u> open90	с	27	backward endcap, matched	
в	26		pulse of reduced N_track =	с	10	secl	short-Endcap ECL matching	·		st vs bhabha cluster	
			1	с	11	iecl_0	#TSF0.1.2-Endcap ECL matching>0	с	28	total matched bhabha	
В	27		pulse of reduced <u>N_track</u> = 2	с	12	eclekim	ECL-EKLM matching			cluster in 3 regions, N = 1	
					13	iskim	TSF0,1,2-EKLM matching	C	29	total matched bhabha	
В	28		pulse of reduced N_track =	с	14		matched, 2D (full) vs			cluster in 3 regions, N > 1	
			3				bhabha cluster, N = 1	-			
в	29		pulse of reduced N_track >	с	15		matched, 2D (full) vs		30	No cluster matched in 3	
	L7	3				bhabha cluster, N > 1			regions		
в	30	fwd_s	#forward short track>0	с	16		non-matched, 2D (full) vs bhabha cluster, N = 1	с	31	No cluster matched in 3	
P	21	bud s	#backward short track >0	с	17		non-matched, 2D (full) vs			regions && No TSF(0,1,2)	
		MILHAR	#BackWard Short track 90				bhabha cluster, N > 1			020	

³⁰ -Because the number of LVDS port is 2(4) with UT4(UT3), need to reduce the number of bits

IVDS hit content position iecl_1 #TSF0.1.2-Endcap ECL matching>1 А 0 А 21 pulse of N_track = 1 В 11 fwd_s #forward short track>0 А 1 cluster_b2b_1to5 A 22 pulse of N track = 2 В 12 bwd_s #backward short track >0 А 2 trkcluster_b2b_1to5 В 13 f2f30 open30, full-to-full А 23 pulse of N_track = 3 А - 3 samehem open30. short-to-short В 14 s2s30 A 24 pulse of N_track > 3 А 4 opphem В 15 open30, short-to-full A 25 pulse of # of short track = 1 А 5 pulse of # of matched clusters (2D-ECL) = 1 В 16 TSF0.1.2 b2b A 26 pulse of # of short track = 2 А 6 pulse of # of matched clusters (2D-ECL) = 2 R 17 pulse of # of NN veto cut track = 1 tvp4 A 27 pulse of # of short track = 3 pulse of NN single track p>0.4GeV А 7 pulse of # of matched clusters (2D-ECL) = 3 В 18 typ5 pulse of # of NN veto cut track = 2 А 8 pulse of # of matched clusters (2D-ECL) > 3 A 28 pulse of # of short track > 3 pulse of NN single track p>0.5GeV A ٥ pulse of # of matched 2GeV clusters (2D-ECL) A 29 i2io TSF1 b2b TSF0.1.2 vs TSF0.1.2 open В 19 pulse of # of NN veto cut track = 3 typб = 1 pulse of NN single track p>0.6GeV 30 TSF2 b2b pulse of NN single track A typ А pulse of # of matched 2GeV clusters (2D-ECL) В 20 pulse of # of NN veto cut track > 3 = 2 A 31 pulse of # of 3D z0 cut track = 1 A 11 b2b_1to7: Opening angle of 2 tracks from В 21 τi. TSE0.1.2 coincidence В 0 pulse of # of 3D z0 cut track = 2 140 to 180 В 22 i2fo TSF0.1.2 coincidence vs ft open90 В 1 pulse of # of 3D z0 cut track = 3 A 12 cdc_open90 В 23 secl short-Endcap ECL matching pulse of # of matched TOP slots (2D-TOP) = 1 А 13 В 2 pulse of # of 3D z0 cut track > 3 В 24 #TSF0.1.2-Endcap ECL matching>0 iecl_0 А 14 pulse of # of matched TOP slots (2D-TOP) = 2 В 3 pulse of # of NN z0 cut track = 1 В 25 eclekim ECL-EKLM matching 15 pulse of # of matched TOP slots (2D-TOP) = 3 A R 4 pulse of # of NN z0 cut track = 2 В 26 st vs st b2b_1to5 A 16 pulse of # of matched TOP slots (2D-TOP) > 3 В 5 pulse of # of NN z0 cut track = 3 В 27 st vs st open90 А 17 pulse of # of matched KLM sectors (2D-KLM) = 1 В 28 st vs ft b2b_1to5 В 6 pulse of # of NN z0 cut track > 3 А 18 pulse of # of matched KLM sectors (2D-KLM) В 29 st vs ft open90 В 7 pulse of reduced N_track = 1 > 1 В 30 total matched bhabha cluster in 3 regions, N В 8 pulse of reduced N_track = 2 pulse of # of matched KLM sectors (short-А 19 = 1 EKLM) = 1В 9 pulse of reduced N_track = 3 В total matched bhabha cluster in 3 regions. N 31 А 20 pulse of # of matched KLM sectors (short-> 1 В 10 pulse of reduced N_track > 3 ELM) > 1

-New bit map: https://confluence.desy.de/pages/viewpage.action?pageId=75106458

EPICS Archiver Appliance Viewer

35

EPICS Archiver Appliance Viewer

EPICS Archiver Appliance Viewer

EPICS Archiver Appliance Viewer

