CDCTRG 2D status 2022/11/24 T.Koga

Motivation

- -Status of new 2D firmware
- -Performance evaluation with cosmic
- -Simulation with collision data for further optimization

Fullhit 2D algorithm

-Modify 2D to count all layer hits inside TSF for hough mapping

-Firmware development is finished by Ping, and Koga takes over commissioning work for his graduation

Parameter of Hough is the same as present 2D, except for hit threshold
 Present 2D: the number of tracked TSF >=4
 New 2D: the number of tracked hit >=20 (Nth)

Commissioning with cosmic

-New firmware is installed and cosmic rate checked. -With Nth>=16, rate is smaller than present 2D. Expected behavior.

Cosmic analysis with offline track

-Offline track is selected from cosmic data -impact parameter |d0|<1cm: select cosmic through IP -first cdc layer<5, last cdc layer>50: select long track from SL0 to SL8

-Track matching is applied to trigger tracks, both tsim and firmware $\int -\Delta \phi < 20 \text{deg}$.

-(no pt requirement because magnetic field is off)

Comparison of track $\boldsymbol{\varphi}$

-With Nth=15, good FW/TSIM/offline track agreement -With Nth=20, FW efficiency is smaller than TSIM/offline -> investigating with larger dataset taken in Oct.

Simulation with collision data

-TSIM is performed with collision data, in order to optimize the hit threshold -Data set:

- -3/21 exp24run1184, physics, beam_reco_filter
- L=~2.0 × 10³⁴, L1 rate=~3kHz, CDC leak current=~40 μ A

-6/13 exp26run1506, debug, beam_reco_filter, **lower TDC threshold -20mV** L=~3.5 × 10³⁴, L1 rate=~8kHz, CDC leak current=~200μA

-6/18 exp26run1893, physics, beam_reco_filter L=~3.0 × 10³⁴, L1 rate=~5kHz, CDC leak current=~200μA

Analysis with offline track

-Offline dimuon track is selected from collision data -impact parameter |d0|<1cm, |z0|<1cm: select cosmic through IP -first cdc layer<5, last cdc layer>50: select long track from SL0 to SL8 -HLT skim = mumutight

Track matching is applied to trigger tracks, both tsim and firmware
 -Δφ<20deg.
 -Δpt

-Compare efficiency and trigger rate

track matching efficiency

-Full-hit2D Hit threshold = 15

-Better efficiency than the original 2D.

track matching efficiency

-Full-hit2D Hit threshold = 15-19

-Efficiency decreases due to low hit efficiency

-due to low gain, which is not simulated and seen on data only

		Efficie	ncy at slot0		
	Nth	exp24run1184	exp26run1506	exp26run1893	
original 2D	4	0.946	0.893	0.857	
	5	0.614	0.448	0.369	
new 2D	15	0.966	0.926	0.897	
	16	0.943	0.886	0.850	optimal
	17	0.910	0.846	0.799	
	18	0.856	0.776	0.713	
	19	0.776	0.666	0.599	

track matching efficiency: Add ADC information

-2D code is modified on TSIM to use ADC information

-TSF: no ADC is used

-2D: only CDChits with ADC=[10,600] is used for Hough mapping.

-Track matching efficiency is checked again -keeping high efficiency

		Efficio	Efficiency at slot0	
	Nth	exp24run1184	exp26run1506	exp26run1893
original 2D	4	0.946	0.893	0.857
	5	0.614	0.448	0.369
new 2D 10 <adc<700< td=""><td>10</td><td>0.998</td><td>0.995</td><td>0.988</td></adc<700<>	10	0.998	0.995	0.988
	15	0.952	0.904	0.872
new 2D 20 <adc<400< td=""><td>10</td><td>0.997</td><td>0.990</td><td>0.985</td></adc<400<>	10	0.997	0.990	0.985
	15	0.937	0.875	0.843

optimai

Track rate reduction

-Check #2D tracks and 2D track rates with original 2D and new 2D -exp26run1780, beam_reco_monitor

-L=~4.0 × 10³⁴, L1 rate=~8kHz, CDC leak current=~250 μ A

-Even with rough idea,

2D track rate reduce ~30%, while keeping efficiency with 20<ADC<400. -further optimization is possible

	Nth	event rate of #2D track>0 exp26run1780	dimuon efficiency exp24run1184
original 2D	4	3.4kHz	0.946
new 2D	16	3.1kHz	0.943
new 2D 10 <adc<700< td=""><td>15</td><td>2.9kHz</td><td>0.952</td></adc<700<>	15	2.9kHz	0.952
new 2D 20 <adc<400< td=""><td>15</td><td>2.4kHz</td><td>0.937</td></adc<400<>	15	2.4kHz	0.937

Further modification with fine hough mesh

-Try to increase Hough binning of φ × pt for better BG rejection
-160 × 34: OK ← tested, same as nominal 2D
-320 × 34: OK ← will be tested with cosmic
-320 × 68: BAD

-Optimization of logic design is needed to reduce LUT resource usage

Summary

-Status of new 2D firmware

-full-hit algorithm is successfully compiled. Trying fine Hough mesh too.

- -Performance evaluation with cosmic
- -cosmic rate is checked and looks OK
- -#CDChits of FW is smaller than TSIM about ~1 hit per track.
- Need further investigation with large data taken in Oct.
- -Simulation with collision data for further optimization
 - -2D track rate reduce ~30%, while keeping efficiency with 20<ADC<400.

	Nth	event rate of #2D track>0	dimuon efficiency
original 2D	4	3.4kHz	0.946
new 2D	16	3.1kHz	0.943
new 2D 10 <adc<700< td=""><td>15</td><td>2.9kHz</td><td>0.952</td></adc<700<>	15	2.9kHz	0.952
new 2D 20 <adc<400< td=""><td>15</td><td>2.4kHz</td><td>0.937</td></adc<400<>	15	2.4kHz	0.937

backup

Track finding efficiency: #hit dependence with TSIM

-Change Nth of TSIM for comparison.

Impact to efficiency is large, even with small changes of the Nth.

-It seems #CDChits of FW is smaller than TSIM about ~1 hit per track.

TSIM modification

-TSIM is modified to use the same timing window as firmware -tdc=4450--4950

-Data-MC agreement is improved but not perfect. Asymmetry is seen.
 → Need further investigation with large data taken in Oct.

Dataset

-exp26run1780, physics, beam_reco_monitor -L=~4.0 × 10³⁴, L1 rate=~8kHz, CDC leak current=~250μA

Example of bad events

-TSF is missing due to low gain and hit efficiency

Track finding efficiency: #hit dependence with TSIM

-Change Nth of TSIM for comparison.

Impact to efficiency is large, even with small changes of the Nth.

-It seems #CDChits of FW is smaller than TSIM about ~1 hit per track.

TSIM modification

- -TSIM is modified to use the same timing window as firmware -tdc=4450--4950
- -Data-MC agreement is improved but not perfect. Asymmetry is seen. \rightarrow Need further investigation

Summary

-Performance evaluation of new 2D firmware with full-hit algorithm by using cosmic

-It seems #CDChits of FW is smaller than TSIM about ~0.5(?) hit per track. \rightarrow Need further investigation.

-Next:

-study fake track rejection performance with collision data in 2022b, optimize Nth and other Hough parameters.