Triggers for dark and low-multiplicity analyses

E.Graziani TRG-DAQ Workshop 1 december 2022

Dark sector and low multiplicity

Basically, three kinds of analyses:

Low-multiplicity Standard Model measurements

Mostly (but not only) g-2 related

Low-multiplicity dark searches

Dark searches in B decays

Dark sector and low multiplicity

Basically, three kinds of analyses:

Low-multiplicity Standard Model measurements

Mostly (but not only) g-2 related

Low-multiplicity dark searches

Dark searches in B decays

Do not suffer from trigger issues

muons	Analyses
Dark Higgs	
• Z' invisibile	
• Ζ'→ττ, μμ	
 A' visible without γ 	
• A' visible + γ	
• $\mu\mu(\gamma)$ control sample (for invisible A' +)
Dark showers	tracks
	• Z' invisibile, dark Higgs
Displaced vtx's	• Ζ'→ττ, μμ
IDM + Dark Higgs	• A' visible without γ
Dark showers	• A' visible + γ

γ / e^{\pm}

• A' invisible (single γ)

 $\pi\pi\gamma$ for HVP

٠

- ALP $\rightarrow \gamma \gamma$ (3 γ final state)
- ALP $\rightarrow \gamma \gamma$ fusion (ee $\rightarrow \gamma \gamma$ e)
- **X17/ A' visible** + γ
- Single $\pi^0/\eta/\eta'$ (ee $\rightarrow \gamma \gamma$ e) •
- $\pi\pi\gamma$ for HVP •
- $\pi\pi\pi^0\gamma$ for HVP •
- **IDM + Dark Higgs** •

4

Triggers

Analyses	triggers	
Z' invisibile, dark Higgs	fy30, <mark>cdcklm</mark> , stt	
Ζ'→ττ, μμ	fff/ffy, <mark>cdcklm</mark> ,stt (fy30, fyo)	CD0
A' invisible (single γ)	hie, ImI6, ImI16 (ImI1, prescaled)	KLN
A' visible without γ	stt, fyo, hie	
X17/ A' visible + γ	dpee (Iml,,hie, c2hie)	
ALP $\rightarrow \gamma \gamma$ (3 γ final state)	hie (high mass) , ggsel (low mass)	
ALP $\rightarrow \gamma \gamma$ fusion (ee $\rightarrow \gamma \gamma$ e)	Iml2, hie (stt, Iml1 barrel)	
Single $\pi^0/\eta/\eta'$ (ee $\rightarrow \gamma \gamma e$)	hie (stt)	
$\mu\mu(\gamma)$ control sample (for invisible A' +)	stt, <mark>beklm, cdcklm</mark> (fyo, syo)	
IDM + Dark Higgs	hie (Iml12, stt [stt4/5])	
ππγ for HVP	hie, (ff, stt)	
$\pi\pi\pi^{0}\gamma$ for HVP	hie, bha3d (lml1)	
Dark showers	stt, stt-ecl, hie for electrons (displaced VTX)	

Triggers used now or in already planned extensions of analyses to the full dataset (and beyond)

Considerations

hie is widely used, both as main trigger and as a reference to measure the efficiency of other lines stt is gaining more and more popularity

Invisible A' == single γ

 Iml16 (0.5 GeV single γ) introduced knowing already that at some time would have been prescaled

 ImI7 (1 GeV in endcap): no plans to extend the search down there

A' visible without $\boldsymbol{\gamma}$

 hie fw is fundamental (low angle ee, where CDC triggers are not optimal)

Single π^0 + ALP $\rightarrow \gamma \gamma$ fusion (ee $\rightarrow \gamma \gamma$ e)

- Low-energy γ, trigger mostly on isolated forward electron
- \rightarrow hie fw is fundamental (Q²)
- Worries about a tightened Bhabha veto that forbids events with single fw high-energy clusters
- Iml2 (2 GeV cluster in endcap) would make the job Applies also to visible A' with no γ and partly to HVP Extending stt to lower angles would be useful

$\pi\pi\gamma$ for HVP

- hie is fundamental
- Trigger is one of the main systematics
- CDC+ECL would break the scheme of measuring hie with an orthogonal trigger
- Some prescaling of CDC is acceptable

X17

- Deeply based on dpee
- If dpee is suppressed/prescaled, the search would be based on bits monitoring Bhabha/background

Z's + DH + other muon-based

- Final state with muons are golden channels since ever
- Single μ trigger must be preserved (cdcklm or ideally KLM only)
- No objections for cdcklm \rightarrow ycdcklm
- Actually, transitions to y lines have always been smooth in the past

Summary

- hie is widely used, both as main trigger and as a reference to measure the efficiency of other lines
- stt is gaining more and more popularity
- Preserving single-muon trigger is a priority
 - \circ $\,$ No a priori objections for cdckIm \rightarrow ycdckIm $\,$
- ECL-CDC match
 - Serious problem for some analyses
 - Drop of efficiency (eg muons)
 - □ Hard to measure efficiencies with combined ECL-CDC. Matching should anyway be accompanied by non-matched unprescaled lines (not clear if this is enough)
 - **Some measurements (** π πγ for HVP) are crucially affected by uncertainties on the trigger efficiency (one of the main systematics)
- A tighter Bhabha veto, vetoing isolated endcap clusters, is problematic for some measurements/searches
- Even more if applied on Iml2 or, worse, if Iml2 is suppressed/prescaled
- Some Iml lines were introduced with the idea they could not survive high luminosity: Iml7, Iml16, Iml9

Please, let's implement relevant (restrictive) changes only when really needed