Status of L1 trigger for the τ group

<u>Alberto Martini</u> – DESY Trigger workshop, 29 Nov. - 2 Dec. 2022

Studied τ topologies: features

Pure leptonic cases:

Expected 2 ~back-to-back cluster energy Missing energy Very similar to bhabhas

Leptonic cases:

Expected at least 1 ~back-to-back cluster energy pair Missing energy Possibly >4 clusters

Hadronic cases:

Expected at least 1 ~back-to-back cluster energy pair Missing energy Possibly >2 clusters Similar to bhabhas

Hadronic cases:

Expected at least 1 ~back-to-back cluster energy Missing energy Possibly >4 clusters

Alberto Martini - Trigger workshop - 1st December 2022

Studied τ topologies: features

Pure leptonic cases: Expected 2 ~back-to-back cluster energy Missing energy Very similar to bhabhas Leptonic cases: Expected at least 1 ~back-to-back cluster energy pair Missing energy Possibly >4 clusters

Hadronic cases:Hadronic cases:Expected at least 1 ~back-to-back cluster
energy pairExpected at least 1 ~back-to-back cluster
energyMissing energy
Possibly >2 clusters
Similar to bhabhasMissing energy
Possibly >4 clusters

Alberto Martini - Trigger workshop - 1st December 2022

Usable bits used for τ physics

Reference detector	Name	Definition	Topology(ies)
CDC	ffy fyo syo stt	Different combinations of track based triggers. Pro: very effective with all different topologies Cons: high performances restricted to the CDC only acceptance → generally not good in the endcaps	tau3x1 tau3x1+tau1x1 tau3x1+tau1x1 tau3x1+tau1x1
ECL	c4 hie Iml	Different combinations of number of clusters and energy deposited. Pro: useful for specific topologies and coverage of endcaps regions Cons: very poor for specific topologies	tau3x1 tau3x1+tau1x1 tau3x1+tau1x1
CDC-KLM + KLM	cdc_klm mu_b2b mu_eb2b eklm2 beklm	Geometrical combinations of signals identified in the KLM, some with CDC matching. Pro: good for muons Cons: High rate for line that only target muons	tau3x1+tau1x1 tau1x1 tau1x1 tau1x1 tau1x1 tau1x1

Usable bits used for τ physics

Reference detector	Name	Definition	Topology(ies)
CDC	ffy fyo syo	#full trk>=3, $ z <20$ cm #full trk>=2, $\Delta \phi$ >90°, $ z <20$ cm #full trk>=1 + #short trk>=1, $\Delta \phi$ >90°, $ z <15$ cm	tau3x1 tau3x1+tau1x1 tau3x1+tau1x1
	stt	#full tracks>=1, z <15cm, p>0.7GeV	tau3x1+tau1x1
ECL	c4 hie Iml	#CL >=4, 18.5° < θ_{LAB} < 129.5° Total E>1GeV, 18.5° < θ_{LAB} < 139.3° Iml are defined in backup slide <u>here</u>	tau3x1 tau3x1+tau1x1 tau3x1+tau1x1
CDC-KLM + KLM	cdc_klm	#full/short trk matching in KLM-Barrel/endcap>=1	tau3x1+tau1x1
	mu_b2b mu_eb2b eklm2 beklm	back-to-back matching in KLM-Barrel sectors back-to-back matching in KLM-Endcap sectors Endcap KLM sectors >=2 Endcap-KLM sectors >=1 + Barrel-KLM sectors >=1	tau1x1 tau1x1 tau1x1 tau1x1

Alberto Martini - Trigger workshop - 1st December 2022

Efficiency evaluation

Efficiency evaluation

Absolute efficiency studies:

Standard performance studies: tau1x1

Standard performance studies: tau1x1

Standard performance studies: tau1x1

Standard performance studies: tau3x1

11

Standard performance studies: tau3x1

12

Ongoing efforts in the τ group (I)

 τ LFUV preliminary studies: 1x1 topology

Ongoing efforts in the τ group (I)

 τ LFUV preliminary studies: 1x1 topology

Ongoing efforts in the τ group (II)

 $\tau \rightarrow 3\mu$ LFV preliminary studies: 3x1 topology with specific kinematics constraints

Alberto Martini - Trigger workshop - 1st December 2022

Ongoing efforts in the τ group (III)

Study trigger efficiency for: $\tau \rightarrow e/\mu$ rho \rightarrow control channel used to avoid unblinding: $\tau \rightarrow 3\pi$

Ongoing efforts in the τ group (IV)

Summary table

Trigger bit	Prescale (today)	Raw Rate	Physics analysis	Physics analyzer	Physics note,slide (of TRG efficiency)	Comments, priority
stt	1		τ 1x1 τ 3x1	CDC trigger for τ group	<u>LFV_tau3mu</u>	priority: high
fy30	1				General checks only This presentation (<u>backup slides</u>)	priority: low
hie, hie3	1		τ 1x1 τ 3x1	au group	<u>LFUV</u> , <u>LFV_tau3mu,</u> <u>LFV_tauerho,</u> <u>LFV_tauIKS</u>	priority: high
Iml2	1		τ 1x1 τ 3x1	au group	<u>LFUV</u> , <u>LFV_tau3mu,</u> <u>LFV_tauerho,</u> <u>LFV_tauIKS</u>	priority: low
Iml6	1		τ 1x1	au group	<u>LFUV</u> , <u>LFV_tau3mu,</u> <u>LFV_tauerho,</u> <u>LFV_tauIKS</u>	priority: medium

Conclusion

- As of today, ~all the active analysis in the τ group rely only on ECL triggers
 - Data and MC agreement are good and performances are rather stable
- stt, hie and ImI are crucial bits for τ physics
 - performances for tau1x1 topology is in danger if stt or ImIX will be prescaled
 - tau3x1 performances are stable
- klm related triggers can play an important role
 - performances are still to be properly estimated by the group (few hints in the backup slides)

Emergency slides!!

Hints on klm-related triggers

tau1x1 topology for different final states

Hints on klm-related triggers

tau3x1 topology for different final states

Alberto Martini - Trigger workshop - 1st December 2022

Taupair selection for the general study

Cuts applied to data samples:

- Event based cuts:
 - nGoodPhotons<3 && nPi0<2
 - thrust>0.85 + 0.52 rad < θ_{miss} <2.8 rad + 1 GeV²/c⁴<M²_{miss}<49 GeV²/c⁴
- Particle identification cuts: PID global variables to separate the different τ channels for both topologies → different cuts are due to different statistical samples.
 - tau1x1: PID>0.9
 - tau3x1: eID>0.5 + μ ID>0.5 + π ID>0.2 on 3 prong tracks + π ID>0.5 on 1 prong track

Cuts applied to MC samples:

- Event based cuts:
 - nGoodPhotons<3 && nPi0<2
 - thrust>0.85 + 0.52 rad <θ_p_{miss}<2.8 rad + 1 GeV²/c⁴<M²_{miss}<49 GeV²/c⁴
- Different τ channels separated using MC truth variables in TauolaBelleII:
 - 1prong e: tauMCMode==1
 - 1prong µ: tauMCMode==2
 - 1prong π: tauMCMode==4,110,163,164,303
 - 3prong decay: tauMCMode==3,4,13,14,22to28,32,33,24,41to47,63,66,70,85,112

Iml trigger bits definition

Low multiplicity definition from the trigger confluence page:

- ImI[0]: (NCL \ge 3, at least 1 CL \ge 300 MeV(Lab)) (with θ_{id} = 1 ~ 17), **not** an ECL 3D Bhabha
- Iml[1]: one $CL \ge 2 \text{ GeV}(CM)$ with $\theta_{id} = 4 \sim 14$
- ImI[2]: one $CL \ge 2$ GeV(CM) with $\theta_{id} = 2, 3, 15$ or 16 and **not** an ECL 3D Bhabha
- ImI[3]: ECL one $CL \ge 2$ GeV(CM) with θ ID = 2, 3, 15 or 16 and an ECL 3D Bhabha
- ImI[4]: one $CL \ge 2$ GeV(CM) with $\theta_{id} = 1$ or 17 and **not** an ECL 3D Bhabha
- ImI[5]: ECL one $CL \ge 2 \text{ GeV}(CM)$ with $\theta ID = 1 \text{ or } 17$
- ImI[6]: only one CL≥1 GeV(CM) with θ_{id} = 4 ~ 15 and no other CL≥300 MeV(Lab) anywhere
- ImI[7]: only one CL≥1 GeV(CM) withθ_{id}= 2, 3, or 16 and no other CL≥300 MeV(Lab) anywhere
- Iml[8]: 170°<ΔφCM<190°, both CL > 250 MeV(Lab), no 2GeV(CM) CL in an event
- Iml[9]: 170°<ΔφCM<190°, one CL > 250 MeV(Lab), the other CL > 250 MeV(Lab), no 2GeV(CM) CL in an event
- Iml[10]: 160°<ΔφCM< 200°, 160°<ΣθCM< 200°, no 2GeV(CM) CL in an event
- ImI[12]: (NCL \geq 3, at least 1 CL \geq 500 MeV(Lab)) (with θ_{id} = 2 ~ 16), **not** an ECL 3D Bhabha

• Red bits are already prescaled

Performance of new bits: bhabha veto on hie

hie bits definitions w/ new bhabha vetoes

hie w/ additional Bhabha veto 1	hie1	 New hie to reduce Bhabha contribution(condition-1) hie && 1CL veto && 2CL veto 1CL veto = not (N(CL)=1 && θ_{CM} in FW) 2CL veto = not (N(CL)=2 && (160°< Σθ_{CM}< 200° && 150°< Δφ_{CM}< 250°) See (link) for details
hie w/ additional Bhabha veto 2	hie2	 New hie to reduce Bhabha contribution(condition-2) hie && 1CL veto && 2CL veto 1CL veto = not (N(CL)=1 && θ_{CM} in FW) 2CL veto = not (N(CL)=2 && (160°< Σθ_{CM}< 200° 150°< Δφ_{CM}< 250°) See (link) for details
hie w/ additional Bhabha veto 3	hie3	 New hie to reduce Bhabha contribution(condition-3) hie && 1CL veto && 2CL veto 1CL veto = not (N(CL)=1 && θ_{CM} in FW) 2CL veto = not (N(CL)=2 && CL_{LowerE} in FW or BW) See (link) for details

Performance of new bits: bhabha veto(I)

Alberto Martini - Trigger workshop - 1st December 2022

Performance of new bits: bhabha veto(I)

MC additional checks

tau1x1 topology for different final states

tau3x1 topology for different final states 120 mu3pi e3pi 4pi ¢ taupair MC15 100 Efficiency [%] 80 60 40 **MC truth applied!** 20 0 cdc_all_AND_stt mu_b2b klm_all beklm mu_eb2b eklm2 stt lml6 cdc_all hie 1m19 fyo C4 Iml2 lm|10 lm112 lm17 lml2,6to10 Iml2_and_6to12 ffy

Alberto Martini - Trigger workshop - 1st December 2022