Trigger bit for PID

Kenta Uno Niigata university

Belle II Trigger/DAQ Workshop 2022 01.Dec.2022

Introduction

Study of LID efficiency is important for Belle II analysis

Channel	Usage	Momentum region
$J/\psi \! ightarrow \ell\ell$	<pre>ℓ efficiency</pre>	0.7 – 3.0 (middle)
$ee ightarrow ee\ell\ell$	<pre>ℓ efficiency</pre>	0.4 – 3.0 (low)
$ee \rightarrow ee\gamma$	e efficiency	0.2 – 7.0 (high)
$ee ightarrow \mu\mu\gamma$	μ efficiency	0.2 – 7.0 (high)
$K_S \to \pi \pi$	$\pi \rightarrow \ell$ fake rate	0.2 – 2.5 (low)
$ au o \pi\pi\pi$	$\pi \rightarrow \ell$ fake rate	0.4 – 4.0 (middle)
$D \to D^0 (\to K\pi)\pi$	$\pi/K \rightarrow \ell$ fake rate	0.4 – 4.0 (middle)

Our purpose is

- Monitor LID performance using data and MC.
- Provide data/MC correction
- Explore issues and etc..

2022/12/1

In this talk, I focus on $ee \rightarrow ee\ell\ell$ channel

Selection criteria in $e^+e^- \rightarrow e^+e^-\ell^+\ell^-$

Apply two-photon event selection

- Use CDC tiggers: ffb fsb, fyb, syb
 - Not use ECL, KLM triggers to avoid a bias on LID efficiency
- $N_{\rm trk} = 2$ with p > 0.4 GeV/c , $\cos\theta_{\rm open}^{\rm lab} > -0.997$
- $\left|\overrightarrow{p^*}_{z,l^+} + \overrightarrow{p^*}_{z,l^-}\right| < 1.0 \text{ GeV/c}, \left|\overrightarrow{p^*}_{T,l^+} + \overrightarrow{p^*}_{T,l^-}\right| < 0.15 \text{ GeV/c}$
- 1.0 $< E_{\rm vis}^* < 6.0$ GeV, $M_{\ell\ell} < 3.0$ GeV/c²

LID efficiency correction

Evaluate *l* efficiency in three channels

- Provide one data/MC correction in each p, θ bin
- → Assume no time-dependency (experimental number dependency)

- The difference b.t.w channels is assigned as syst uncertainty.
 - Investigation of the difference is ongoing

eg. difference of event's multiplicity

Trigger for two-photon ch.

ffb, fsb for e7-e16 and fyb, syb for e17-

- To keep using un-prescaled triggers: prescale of ffb,fsb = 100 (e17-)
- → The prescaled triggers affect LID evaluation

For example, for using Moriond2022 data (e7 – e18, 190 fb⁻¹)

- data A: exp7–16 (90 ifb): ffb, fsb = 1
- data B: exp17–18 (100 ifb): ffb, fsb = 100

$$\int_A L \, dt \sim \int_B L \, dt$$
, but $\sum_i^A N_i \sim 100 \times \sum_i^B N_i$

 \rightarrow data B is negligible due to small statistics

(not same treatment as physics analyzers)

Data/MC using, ffb, fsb triggers Observe time-dependency in muon ID efficiency..

2022/12/1 Largest stats

- Consistent treatment as other channels is important
- \rightarrow Request un-prescaled triggers for consistency with others

※ Run-dependent MC would reflect the effect, but if MC does not perfectly reflect, the difference would appear

Alternative trigger

- I heard fyb,syb might be prescaled in the future
 - If so, we need to consider strategy again
- Alternative trigger candidate
- Applying CDC-ECL matching is probably fine: fybecl, sybecl?
 - What cluster energy is applied to keep unprescaled triggers?
 - Need to select "not ECL-matched track" for LID eff evaluation
 - Is it possible to identify which track is ECL-matched one?
- Using stt trigger: #tracks >= 1 with p > 0.7 GeV/c
 - Need to select "not triggered track" for LID eff evaluation
 - Is it possible to identify which track is triggered one?

Statistics due to prescaled trigger

- Another important point is statistics for high momentum
- Not enough statistics above p > 2.0 GeV/c for now.
 - Evaluation is not possible in case of using prescaled triggers

Of course, we'd like to request unprescaled triggers If it's difficult, unprescaled triggers for only high p is desired

Summary

Use CDC triggers for LID efficiency in two-photon channels

- Un-prescaled triggers are necessary
 - to obtain consistent result with other channels
 - to enhance the events with high momentum
- <u>CDC-ECL matching is probably fine: no bias on LID efficiency</u>
 - More dedicated study is ongoing

Trigger	p, heta coverage	prescale
ffb, fsb	\bigcirc	100 from e17 \rightarrow Not use
fyb, syb Main t	riggers now O	1, but X from exp??
fyb_ecl, syb_ecl	\bigcirc	1 in the future?
stt	How much endcap acceptance?	1 in the future?
※ my idea fyb_low(high) Syb_low(high)	\bigcirc	5(1) ?

Backup

Time dependency: muon, Q = -1

Negative charge, muon ID > 0.9, $0.82 \le \theta \le 2.22$ rad

2022/12/1

Low data efficiency with exp10, 12, 14