

GNN-based Track and Vertex Finding

Belle II Trigger Workshop

Lea Reuter, Philipp Dorwarth, Slavomira Stefkova, Torben Ferber | 30th November 2022

www.kit.edu

Project members: Machine Learning for Trigger

KIT (ETP)

L. Reuter, I. Haide, P. Dorwarth, P. Ecker, G. Heine, S. Stefkova, T. Ferber

KIT (ITIV)

M. Neu, K. Unger, J. Becker

MPI (MPP)

E. Schmidt, F. Meggendorfer, C. Kiesling

Motivation

Credit: Patrick Ecker

Searches for displaced vertices

- Displaced vertices important signature in searches for new physics
- Example signal decay with dark photon A' and dark higgs h' $e^+e^- \rightarrow A'h'$, $h' \rightarrow \mu^+\mu^-$, $A' \rightarrow \chi_1\chi_2$, $\chi_2 \rightarrow \chi_1 e^+e^-$

Challenge:

- Tracks with displacement larger than 40 cm are currently not triggered by Single Track Trigger (stt)
- stt reconstruction efficiency decreases depending on displacement

Approach with Graph Neural Networks

Variable number of CDC hits \rightarrow utilize Graphs and Graph Neural Networks (GNN)

Approach with Graph Neural Networks

Approach with Graph Neural Networks: Track Finding

 \rightarrow Use nodes as input to Object Condensation (arXiv:2002.03605)

 \rightarrow Goal: Find unknown and variable number of tracks and simultaneously predict track fitting parameters (momentum, displacement...)

 \rightarrow Use nodes as input to Object Condensation (arXiv:2002.03605)

 \rightarrow Goal: Find unknown and variable number of tracks and simultaneously predict track fitting parameters (momentum, displacement...)

 \rightarrow Use nodes as input to Object Condensation (arXiv:2002.03605)

 \rightarrow Goal: Find unknown and variable number of tracks and simultaneously predict track fitting parameters (momentum, displacement...)

 \rightarrow Use nodes as input to Object Condensation (arXiv:2002.03605) \rightarrow **Goal:** Find **unknown** and **variable** number of tracks and simultaneously predict track fitting parameters (momentum, displacement...)

Object Condensation Track Finding

More realistic scenario:

Simulated samples:

- Between 1 to 3 μ^- and μ^+
- Starting with early-phase3 beam background conditions
- Not displaced
- θ = [30, 120] °, so within barrel CDC
- Transverse momentum p_t = [0.3, 5] GeV
- Release: feature/BII-9379-store-cdchit-relations-to-all-particle
- Globaltags: main_2022-01-27 and patch_main_release-07
- Starting with BGx0 and early-phase 3 BGx1 /group/belle2/dataprod/BG0verlay/early_phase3/release-05-01-15/ overlay/phase31/BGx1/set0/

Object Condensation Track Finding

More realistic scenario:

Simulated samples:

- Between 1 to 3 μ^- and μ^+
- Starting with early-phase3 beam background conditions
- Not displaced
- θ = [30, 120] °, so within barrel CDC
- Transverse momentum p_t = [0.3, 5] GeV
- Release: feature/BII-9379-store-cdchit-relations-to-all-particle
- Globaltags: main_2022-01-27 and patch_main_release-07
- Starting with BGx0 and early-phase 3 BGx1 /group/belle2/dataprod/BG0verlay/early_phase3/release-05-01-15/ overlay/phase31/BGx1/set0/

Training

- Trained on 12 000 samples (very small sample size, model not yet optimized)
- Input features per node: Only use 2D-information CDC hit x, y position
- Predicting: **unknown** and **variable** number of tracks n_{tracks} and 3D-Momentum p_x , p_y , p_z

Object Condensation Track Finding

More realistic scenario:

Simulated samples:

- Between 1 to 3 μ^- and μ^+
- Starting with early-phase3 beam background conditions
- Not displaced
- θ = [30, 120] °, so within barrel CDC
- Transverse momentum p_t = [0.3, 5] GeV
- Release: feature/BII-9379-store-cdchit-relations-to-all-particle
- Globaltags: main_2022-01-27 and patch_main_release-07
- Starting with BGx0 and early-phase 3 BGx1 /group/belle2/dataprod/BG0verlay/early_phase3/release-05-01-15/ overlay/phase31/BGx1/set0/

Training

- Trained on 12 000 samples (very small sample size, model not yet optimized)
- Input features per node: Only use 2D-information CDC hit x, y position
- Predicting: **unknown** and **variable** number of tracks n_{tracks} and 3D-Momentum p_x , p_y , p_z

Assumption: Tracks starting at the Interaction Point, currently only momentum is predicted

(cm)

Institute of Experimental Particle Physics (ETP)

Track Finding: Comparison with basf2

Evaluated on 30 000 samples with 1 to 3 particles (uniform distribution)

Found Tracks in Event	GNN (offline) ^a	TRGCDC2DFinderTracks	TRGCDCNeuroTracks	RecoTracks
Only signal tracks	91.5%	94.0%	93.8 %	90.6 %
Missing signal tracks	2.1 %	5.6 %	5.6 %	0.02 %
All signal tracks and additional tracks ^a	5.9 %	0.4 %	0.6 %	9.38 %
Missing signal tracks and additional tracks ^b	0.5%	0.01%	0.0 %	0.005 %
Per Track				
Efficiency	97.4%	94.4%	94.4%	99.98%
Precision	95.8 %	99.8%	99.7%	93.3%

• Efficiency = $\frac{n_{\text{SignalTracks, pred}}}{n_{\text{SignalTracks, truth}}}$

• Precision = $\frac{n_{\text{SignalTracks, pred}}}{n_{\text{Tracks, pred}}}$

ightarrow Why is the Precision nearly 100% and there are no beam-background tracks found for TRGCDC2DFinderTracks?

^aNot optimized mode, trained on small sample size

^badditional tracks include beam-background (real tracks), fake and duplicate tracks

Track Finding: beam-background Tracks

- Why is the TRGCDC2DFinderTracks not finding this beam-background track?
- Are there already event-time cuts applied?
- \rightarrow Studies with Sally's beam-background overlays to distinguish between beam-background and fake tracks

Track Finding: Resolution Comparison with L1 Trigger

GNN (offline) to L1 Trigger TRGCDC2DFinderTracks and TRGCDCNeuroTracks momentum resolution

Track Finding: Efficiency Comparison with L1 Trigger

GNN (offline) to L1 Trigger TRGCDC2DFinderTracks and offline RecoTracks (offline) efficiency Evaluated on 30 000 samples resulting in 60 000 Tracks 1200 tracks per bin

For **offline reconstruction**, the challenge will be displaced tracks:

11/14

27.11.2022

Track Finding: High Multiplicity Events

Object Condensation model is good in **generalizing**: Evaluation of previously trained model on high multiplicity events (9 particles)

Institute of Experimental Particle Physics (ETP)

GNN Tracking Project Overview

Summary and Outlook

Current Status

- Developing GNN-based Track and Vertex Finding Pipeline
- Performance measurement of different graph building methods and edge-classification
- Implemented Object Condensation for Drift Chamber Track Finding and testing on samples with current beam-background conditions

\rightarrow Have first full Track Finding and Fitting GNN model working

Outlook

- Working together with ITIV (Department of Electrical Engineering and Information Technology at KIT) to implement Graph Building, Edge Classification Network and Object Condensation Model on FPGA for real-time application
- Extend Object Condensation to predict displaced tracks offline and online and develop Vertex Finding
- Evaluate Object Condensation on Data/MC for displaced vertex Example

$$egin{array}{ll} {}^+e^- o \Phi\gamma, \ \Phi o {K_{
m S^0}} {K_{
m L^0}} \end{array}$$

Institute of Experimental Particle Physics (ETP)

Track Finding: Nominal Beam-Background

Accessing basf2 Track Objects for Comparison Studies

TrackReconstructer=['TRGCDC2DFinderTracks', 'TRGCDCNeuroTracks'] per event:

- Ioop over tracks found by respective TrackReconstructer
- Relation with 'CDCTriggerSegmentHits'
- CDCTriggerSegmentHits' relation with 'MCParticle'
- track MC ID is equivalent to the most frequent number of MC IDs of the related track segments, else its classified as background
- Write out all tracks per event for each Track Reconstructor
- Track Properties are accessed by HelixObject foundmom=track.getMomentum(1.5) foundmom.Pt(), foundmom.Phi(), foundmom.Theta(), foundmom.X() ...

For offline RecoTracks:

- Loop over found 'RecoTracks'
- Relation with 'Tracks'
- Fit for Track: getTrackFitResultWithClosestMass(Belle2.Const.ChargedStable(211)) Pion Hypothesis
- Track Properties then accessed as above from the fit object