Software-assisted Event Builder

Dima Levit

Institute of Particle and Nuclear Studies

November 30, 2022

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Motivation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

Shortcomings of the Current Event Builder

- Buffer data in FPGA's memory before event building
 - no external memory
 - small internal memory
- Events read sequentially
- Full event must be in memory before event builder can start data processing
- Sources of deadtime
 - large events
 - delayed events

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

New Event Building Scheme

Main idea:

- 1. write data directly to ROPC
- 2. build events in software
- Non-sequential data transmission in firmware

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

⇒ Software-assisted event builder

PCIe40 Firmware

User Logic Firmware Layout

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Channel-based data processing chain
- Multiplexer with interface to the DMA core

Channel-based Data Processing Chain

- Interface conversion from B2L to AXI4Stream
- Event processor
 - data headers analysis
 - trigger number matching with b2tt information
 - synchronization recovery
 - separation of long frames into sub-frames
- DMA frames as units of data transmission
 - no need to wait for end of event before starting data transmission

- DMA writer
 - assign headers and trailers to the DMA frames

Multiplexer

Controller

- selects channel with highest FIFO occupancy
- AND DMA frames ready for transmission
- changes channel once DMA frame transmission finishes
- Multiplexer structure
 - connects one DMA writer to the DMA controller
- 7 clock cycles needed to change channel

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Ressource Utilization

Resource	Usage %			
Logic utilization (ALMs needed / total ALMs on device)	202,339 / 427,200	02,339 / 427,200 47 %		
 ALMs needed [=A-B+C] 	202,339			
 [A] ALMs used in final placement [=a+b+c+d] 	264,769 / 427,200	,769 / 427,200 62 %		
[B] Estimate of ALMs recoverable by dense packing	64,119 / 427,200	15 %		
 [C] Estimate of ALMs unavailable [=a+b+c+d] 	1,689 / 427,200	< 1 %		
Difficulty packing design	Low			
Total LABs: partially or completely used	33,809 / 42,720	79 %		
 Combinational ALUT usage for logic 	278,597			
Combinational ALUT usage for route-throughs	80,930			
 Memory ALUT usage 	8,280			
 Dedicated logic registers 	333,627			
ALMs adjustment for power estimation	32,752			
Virtual pins	0			
I/O pins	pins 419 / 960 4			
I/O registers	2			
M20K blocks	2,277 / 2,713	84 %		
Total MLAB memory bits	83,776			
Total block memory bits	34,923,372 / 55,562,240	63 %		
Total block memory implementation bits	46,632,960 / 55,562,240	84 %		

Software

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三</p>

Software Layout

- Driver
 - copy data from kernel to user space (data copy!)
- Superpage processor
 - divide superpage into DMA frames
- Subevent builder
 - combine DMA frames from the same channel to an event
 - calculate and compare CRC (data access!)
 - check data consistency
- Event builder
 - combine subevents to an event (data copy!)
 - send event to eb1tx over a ZMQ socket

Performance and Limitations

Effect of Core Frequency

35 channels with 5 kB/event running at 20 kHz (not fully optimized)

Clock FTSW Face plate clock : 127216234			
Run number : 224 Trigger Clock Up : OK TTD Up : OK Trigger counter : 3029	tag : 10869716 Trigger type :	DMA deadtime : 7 Trigger rate :	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Effect of Core Frequency

35 channels with 5 kB/event running at 20 kHz (not fully optimized)

Clock FTSW		
Run number : 224 Trigger tag : 10869716	DMA deadtime : 0.125452	
Clock Up : OK TTD Up : OK Trigger type : Trigger counter : 3029	7 Trigger rate : 15100	


```
Clock FTSW
Face plate clock : 127216238 Hz
Run number : 236 Trigger tag : 2112495 DMA deadtime : 0.146884
Clock Up : OK TTD Up : OK Trigger type : 7 Trigger rate : 17319
Trigger counter : 1020
```

further increase fails due to timing violations within FIFOs

$$\frac{150}{127}\approx \frac{17319}{15100}$$

 \Rightarrow PCIe data transmission scales linearly with clock frequency

Expected throughput at 150 MHz: 4.8 GB/s

Further Optimizations

 Full event builder software, no CRC calculation

► Throughput: 2.98 GB/s

far away from theoretical limit

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Further Optimizations

 Full event builder software, no CRC calculation

► Throughput: 2.98 GB/s

far away from theoretical limit

- Too coarse sleep function in PCIe driver
 - schedule(): granularity 1 ms
 - replaced by udelay(1): granularity 1 us, busy wait
- Throughput: 4 GB/s
 - 12% inefficiency due to MUX switching

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Test with eb1tx

Implemented event headers

- Data transmission over a single ZMQ push-pull socket
 - one event one message

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Test with eb1tx

- Implemented event headers
- Data transmission over a single ZMQ push-pull socket
 - one event one message
- Performance sufficient for 25 GB/s Ethernet

Figure: Data rate with eb1tx (with CRC checks)

Figure: Data rate with eb1tx using 4 ZMQ contexts for internal data transmission (with CRC checks)

CRC Optimization

▶ 85% of subevent builder time taken by CRC calculation

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

bottleneck of the performance

CRC Optimization

Reduce number of computations

 16% improvement on standalone process

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

CRC Optimization

- Reduce number of computations
 - 16 % improvement on standalone process
- 2 % improvement in event builder
 - performance limited not by CPU power
 - possible limitation by memory bandwidth

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

PCIe40 Handling of Delayed Data

In general, no problems with data delay up to 6 ms on one channel even at high trigger rates (22 kHz)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- only if far from throughput limit
- Data mismatch if operated at throughput limit
- Event mixup in the channel with delayed data

Туре	Allas	Tap 🍸	Name	-3		-2		1		0
· ·		Pre-Syn	event_processor_inst r.event_fifo_wren							
· ·		Pre-Syn	event_processor_inst r.event_incomplete							
· ·		Pre-Syn	event_processor_inst r.tlast							
· ·		Pre-Syn	event_processor_inst r.trg_re							
1		Pre-Syn	event_processor_inst[r.b2ttinfo.tt_info.tt_tag[31.0]						0000	3806
1		Pre-Syn							0000	380h
-		Pre-Syn	event_processor_inst[r.evtErrorFlags[31.0]				000000006		<u> </u>	<u> </u>
6		Pre-Syn	event_processor_inst[r.fsm[3.0]				DATA_ST			EOE_ST
1		Pre-Syn	event_processor_inst[r.fsm_return[3.0]						DAT	A_ST
-		Pre-Syn	event_processor_inst[r.timeout_cnt[19.0]				\sim		00	abah
		Pre-Syn	event_processor_inst s_axis_itdata[15.0]		9997h	X	(1381h)	χ	F7Ch	1
-		Pre-Syn	event_processor_inst s_axis_i.tlast				$\overline{}$			
<u> </u>		Pre-Syn	event_processor_inst s_axis_i.tvalid							

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Two events merged to one
 - Iost last data word of the first event
- System stability depends on the error rate
 - can recover if slightly above throughput limit
 - no recovery if far above limit

Remaining Problems

- 1. Delayed data sources may cause buffer overflow in PCIe40
 - if operated at throughput limit
 - details in my next talk
- 2. Handling of the end-of-run situation
 - DMA controller buffers frames to fill full superpage
 - data not transmitted if run stops in the middle of superpage
 - flush data out: use dummy channel ID(63) and discard data in software

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

System Extension

(ロ)、(型)、(E)、(E)、 E) の(()

Possible Extensions: Data Processing

- Optional data processing module as independent process
 - for example, TOP feature extraction
- ZeroMQ socket as interface to EB0 and EB1TX
 - stable interface
 - no modification to EB0 required
 - can be scaled to another PC if performance of ROPC not sufficient

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Possible Extensions: Second PCIe Interface

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Increase throughput with second PCIe interface
- Firmware and software easy to adapt

Lessons Learned

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Lessons Learned

- 1. Use standard interfaces
 - AXI4Stream, ZMQ
 - for example, to connect single channel to the DMA controller
- 2. Use formal code verification

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- OsVVM for randomization and scoreboards
- UVVM for AXI4Stream BFMs
- after passing verification, code "just works"

Summary

 Software-assisted event builder designed and tested at B4 testbench

- solves the problem with large events
- no principal problem with delayed data
- performance bottlenecks understood
- Performance of the system measured and bottlenecks identified
 - 2.4 GB/s sustained data rate with CRC calculation
 - 4 GB/s sustained data rate without CRC calculation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposed modular system extension

Backup Slides

(ロ)、(型)、(E)、(E)、 E) の(()

Backpressure Problem

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Data in front-ends after busy issued
- Starts at constant delay if event size is constant
 - time needed to transmit event

Backup Slides: Memory bandwidth

Figure: Without CRC calculation

Figure: With CRC calculation

(日)

э

Profiling of the EB0

subeventbuilder processes

ヘロト 人間 とくほ とくほ とう

э

Figure: Without CRC calculation

subeventbuilder processes

Figure: With CRC calculation