Belle2Link Upgrade Project

Dima Levit

Institute of Particle and Nuclear Studies

November 30, 2022

Belle2Link Overview

- Purpose: transmission of data and configuration information between FEE and read-out electronics
- ► Medium: multimode optical fiber
- ► Hardware: Xilinx and Intel FPGA
- ► Signaling rate: 2.5 Gb/s
- ► Encoding: 8b10b

Data Flow on the Belle2Link

- Data/Slow control frame layout
 - 2 commas for begin/end of frame
 - up to 9 data words
 - 2 words with CRC
 - ▶ 5 IDLE words: artificial throttling
- Maximum link efficiency: $\frac{9}{18} = 50\%$

Motivation

Belle2Link Upgrade Project

- Prepare Belle2Link for higher data rates
 - can still be done while keeping singaling rate
 - faster data transport from FEE
- Reduce probability of data loss
 - improve DAQ efficiency
- Upgrade "under the hood"
 - backwards compatibility
 - no change in link initialization
 - keep interface to FEE
 - add optional signal

PCle40 Handling Delayed Data

- ▶ In general, **no problems** with data delay up to 6 ms on one channel even at high trigger rates (22 kHz)
 - only if far from throughput limit
- Data mismatch if operated at throughput limit
- Event mixup in the channel with delayed data

ype /	Allas	Tap 🝸	Name	-3		-2		- 1		9	
_		Pre-Syn	event_processor_inst r.event_fifo_wren								
		Pre-Syn	event_processor_inst r.event_incomplete								
		Pre-Syn	event_processor_inst r.tlast								
		Pre-Syn	event_processor_inst r.trg_re								
- 1	\neg	Pre-Syn	⊕ event_processor_inst[r.b2ttinfo.tt_info.tt_tag[31.0]						0	0001380h	
-	\neg	Pre-Syn	event processor inst[r.headers.tt tag[310]						- 0	0001380h	
,		Pre-Syn	event_processor_inst r.evtErrorFlags[31.0]				00000000h			$\overline{}$	
,		Pre-Syn	event_processor_inst[r.fsm(30)				DATA_ST			1	EOE_ST
, [\neg	Pre-Syn	event_processor_inst[r.fsm_return[3.0]							ATA_ST	
		Pre-Syn	event processor inst[r.timeout cnt[19.0]							coccah	
,		Pre-Syn	event_processor_inst(s_axis_itdata(15.0))		997h	\rightarrow	(1381h	X	8F7Ch	X	
	\neg	Pre-Syn	event_processor_inst s_axis_i.tlast								
		Pre-Syn	event processor instis axis i.tvalid								

- ► Two events merged to one
 - lost last data word of the first event
- System stability depends on the error rate
 - can recover if slightly above throughput limit
 - no recovery if far above limit

Backpressure Problem

- Data in front-ends after busy issued
- Starts at constant delay if event size is constant
 - time needed to transmit event

Possible Solutions

- ▶ Implement data throttling for B2L data in PCle40
 - end the event if FIFO is close to being full
 - problematic for the HLT
- Add backpressure to B2L
 - can be implemented as a suggestion to keep backward compatibility
 - front-ends with buffer will be able to hold data to prevent FIFO overflow
 - front-ends without buffer will behave in the same way as now
 - data throttling is still needed

Backpressure

Backpressure mechanism

- Transmit backpressure k-character (0xDC) with the status of bacpressure
- Set flag to indicate condition to the backpressure
- Select timing to be able to receive all data in Belle2Link FIFO
 64 words
- ▶ Backwards compatible to original behaviour
 - Belle2Link will continue to send data with backpressure ON

Backpressure mechanism

- ▶ **b2lfull** signal
 - PCle40 to FEE
- ▶ '0': normal operation
- '1': "Please stop sending data if you can"

Increase of the Throughput

Data Flow on the Belle2Link

- Data/Slow control frame layout
 - ▶ 2 commas for begin/end of frame
 - up to 9 data words
 - 2 words with CRC
 - ▶ 5 IDLE words: artificial throttling
- Maximum link efficiency: $\frac{9}{18} = 50\%$

Bypass Idle States and CRC

- Remove IDLE states and CRC words
- CRC not used at the moment
 - no reason to use if no retransmission
 - better use error counter based on the 8b10b decoder error signal
- Maximum link efficiency: $\frac{9}{11} = 82\%$

Uninterrupted Data Flow

- Transmit full data Uninterrupted
- ► Maximum efficiency goes to 100 % for long frames
- Long delay for slow control frames

Slow control Preemption

- Interrupt data frame to transmit slow control frame
- Schedule to delay slow control frames if data FIFO fill level high
- ► Maximum efficiency goes to 100 % for long frames
- Will require substential change to the source code
 - interface to the FEE will not be changed

Tests in Simulation

Simulation Setup

- Fully automatic checks
- Data checks
 - UVVM BFMs for AXI4Stream
 - use existing adapters to B2L interface
- Register checks
 - ► A7D8, A16D32, bitstream interfaces
- Busy checks
 - count number of rising/falling edges on both sides of the link

Simualtion Result

- Simulated conditions:
 - backpressure transmission
 - removal of the IDLE and CRC states
- Simulation completed successfully

Summary

- Proposed changes to the Belle2Link
 - all changes backwards compatible
 - no changes in link initialization
- Backpressure transmission to FEE to prevent FIFO overflow in PCle40
 - successfully verified
- 2. Increase of the throughput by removing IDLE states and CRC
 - successfully verified
- Transmission of long frames and preemtion by slow control frames
 - development not started yet