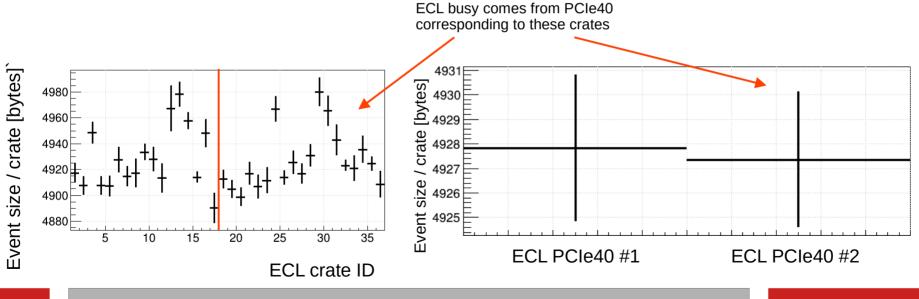


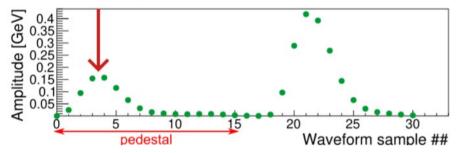
Belle II Trigger/DAQ workshop, 2022.11.29 Mikhail Remnev


ECL persistent busy in PCIe40 readout tests

- * During DAQ high-rate tests with 30 kHz poisson trigger, we have been seeing frequent run stops due to ECL busy.
- * On average, runs are stopped after ~1 hour. -
- * ECL busy signal seems to be due to a buffer overflow in PCIe40. Surprisingly, busy always comes from the PCIe40 corresponding to ECL crates B19-B36.
 - This is not an issue of a particular board, different setups have been tested to confirm this.
- * From testing different configurations, we can see that saving larger amounts of ECL waveform data causes higher frequency of ECL busy.
 - no waveform saving \rightarrow no ECL busy (3 kbytes/s/board)
 - 100% waveform saving \rightarrow ECL busy in ~10 minutes (80 kbytes/s/board)

ECL persistent busy in PCIe40 readout tests

- * I am a bit surprised about these results. If we save 100% of waveform data, the average data size from ECL crates 1-18 is not much different from ECL crates 19-36.
- * Waveform data is compressed by ECL FEE modules. Higher electronics noise => lower compression efficiency. Thus, noisy channels result in larger event size.



ECL persistent busy in PCIe40 readout tests

- * In any case, we have some measures to prevent buffer overflow:
- There is an automated measure that blocks waveform saving if there is a risk of buffer overflow in ECL FEE.
- There is a buffer in ECLCollector module, so I think we can handle delays of at least up to 15 μ s when sending data to PCIe40 without losing anything.

As was reported in TB meeting on 2022.11.18, injection background causes data loss in ECL due to underestimation of the hit amplitude.

 ${ullet}$ Higher pedestal \rightarrow lower amplitude \rightarrow more hits below the 1 MeV threshold are discarded.

This can be fixed in several ways, best energy resolution is achieved if we save waveform data with bad pedestal for offline re-processing at the ECL unpacking stage.

However, as this leads to the increase in the number of saved waveforms, we are also considering ways to reduce ECL data size.

- * One possibility is to reduce (possibly to 0) the number of waveforms with E > 50 MeV saved for pulse shape discrimination, as pulse shape discrimination algorithm can be done within ECL FEEs. (using more sophisticated fit algorithm)
- The algorithm is being prepared and tested.
 However, there is an additional issue the algorithm will require more configuration parameters, so total FEE configuration size will be ~500 MB instead of ~300 MB.
- * That is a possible issue because we are using the same configuration in ECL DQM for data validation.
 - We fit some fraction of ECL waveforms within ECL DQM and compare the results with ones obtained from ECL FEE.
 - This feature is vital for quickly noticing possible issues with ECL electronics. (and has helped us multiple times)

- * Currently: ~300 MB per basf2 process at HLT. Possible new value: ~500 MB per basf2 process at HLT.
- * 300 MB is already not very good, I would prefer not to increase it further.
- * One option is to do this part of ECL DQM procedure only at ExpressReco. - Is it fine to have large RAM usage there?
- * Other alternative is to do data processing on dedicated ECL PC by sending event data with the scheme similar to the scheme utilized by EventDisplay.

- * Two main conflicting issues in ECL DAQ are
 - 1. Large size of waveform data.
 - 2. Handling of injection background (that might likely require to save more waveform data).

We are trying to reconcile the solutions to these issues.