

Operation History of Belle II HLT
and

New Framework

Ryosuke Itoh
IPNS, KEK

2

FE
dig
FE
dig
FE
dig
FE
dig

FE
dig

tx

tx

tx

tx

tx

rx

rx

rx

rx

R/O
PC

R/O
PC

R/O
PC

R/O
PC

E
vent B

uilder 1

~250 COPPERs

HLT
(>6400 cores)

~40 R/O PCs

Rocket IO
over fiber

CDC

SVD

PID

ECL

KLM

E
vent B

uilder 2

PXD
FE
dig

PXD readout box
(ONSEN)

RoI
Merger

reco
rder
reco
rder
reco
rder

reco
rder

....
..

.....

DATCO
N

Belle2link

Expre
ss

Reco

FTSW
Trigger

FTSWFTSW

Pocket DAQ

Belle II DAQ System

QA
S

Offline comp.

Online
Disk

1. Requirements to Belle II HLT

Functions of Belle II HLT

0. Event data transport to storage (except PXD) at the rate of
 up to 30kHz. Event size is around 100kB.
 -> >3GB/sec throughput must be ensured.

1. Discarding background events using full event reconstruction
 results.

2. Real time monitoring of data quality including physics level
 monitoring

3. RoI generation and transport to PXD readout

- The processing for 1 to 3 is based on the full event reconstruction.
 * The same offline software is assumed to be used.
 * The processing time / event is critical.

- Ave. time is > 0.3 sec./event/core.

- To manage 30kHz, one event must
 be processed in 0.000033 sec.

 => Needs large scale parallel
 processing with a granularity
 of O(10000).

R.Itoh @ BPAC2016

2. Hardware of Belle II HLT

- Unit structure: Coarse parallelism is implemented by the unit
 structure. Event builder distributes the events
 to each unit following the modulo of event number.

- One unit consists of an input server, an output server, and up to
 20 worker nodes with a control server.

- Each worker is equipped with muticore CPU(s) providing 16-40
 physical cores / server.

- Data flow nodes are connected via 10GbE network while
 all nodes are via GbE network for the system control.

Workers

See following link for the detail of the construction
https://confluence.desy.de/display/BI/Hardware+preparation+of+an+HLT+unit

HLT01:
 16 cores * 9 + 20 * (2+2) + 28 * 2 + 36 * 2 + 40 * 3 = 472 cores
 (replaced 11 of 16 core servers with new ones).
HLT02-05
 20 cores * 16 + 36 cores * 2 + 40 cores * 2 = 472 cores
HLT06-09
 28 cores * 12 + 36 cores * 2 + 40 cores * 2 = 488 cores
HLT10
 28 cores * 12 + 36 cores * 2 + 40 cores * 2 = 488 cores

4800 cores
- Last reinforcement achieved 75% of the design number
 of cores(6400).
- At the same time, the operating system has been upgraded
 to CentOS7.

Number of physical cores after 2021 HLT Reinforcement

max: 13-14kHz

V.S.Vobbilisetti (IJCLab)

Addition of 3 HLT/STORE units in LS1

- 18 new HLT workers + 2 sets of HLT control/STORE units
 are already in hand.

- 15 (or more) servers + 1 more set of HLT control and STORE
 units will be purchased by the end of FY2022.

=> 1.5 units will be built in autumn (Oct.-)
 1.5 unit will be added in Jan.-Mar (2023)
 -> In total : 13 HLT units; 6400 cores.
 (one of them = HLT13 will be used as a test bench as before until it is really
 needed to process high rate)

Note: HLT operation during summer was limited (up to 5 units) to
 save the power consumption.

Expected performance : up 20 kHz from 2023c run!

3. HLT processing framework

HLT framework consists of four subframeworks

1. Data flow framework for parallel processing
 * Consistent extension of basf2 parallel processing
 utilizing the same RingBuffer
 * Socket interface from/to RingBuffer performs actual data flow
 between nodes.

2. Control framework to synchronize the operation of servers.
 * Own control framework based on native NSM2
 (independent of daq_slc)
 * External interface to daq_slc

3. Live histogram collection
 * Framework to “spy” and “collect” lively accumulated histograms.
 * It includes the transport of histograms to other node over socket
 connection.

4. RoI transport
 * A mechanism to extract RoI from HLT processed results and
 send them to PXD readout.

rx
tx
tx
tx

rx tx

rx
rx
rx

tx
basf2

Worker Nodes
(~16 nodes20cores)Input Node

ring buffer
rx event receiver

event sender

Output Node

B2Socket

multicore

tx

E
vent B

uilder 1 one HLT unit

D
etecto R

/O

E
vent B

uilder 2

Pixel
Detector

R/O

 10 HLT units
 for now

Histo
memory

DQM server

ba
sf2

RoI

raw dataraw data

10GbE-T

Real Time
Histogram Dump

1. Data flow framework (Original framework : RFARM)

Raw data flow on HLT

basf2

R
b
uf

event server

raw
data

raw data

Formatting to ROOT

Streamed object

basf2

RoI to PXD R/O

output server

Streaming
Destreaming

Streaming
+ header

Histogram Collection

- Implemented by the repeated use of hserver and hrelay.

inp
ut
mo
d.

Dqm
Hist

o
Man
ager

mo
d1

mo
d2

mo
dn

x multicore

hserver

basf2/core

TMemFilehrelay

hlt control node
(hltctl)

hserver
TMapFile
hrelay

histogram collection from 20 servers

dqmsrv1
(DQM master PC)

hserver
TMemFile

DQM Browser

socket connection

DQMnet
ExpressReco

10-20 HLT units

hserver
TMapFile
hrelay

hserver
TMapFile
hrelay

hserver
TMemFile
hrelay

hserver
TMemFile

DQMnet

HLT01-10

hserver
TMemFile

hserver
TMemFile
hrelay

ExpressReco

DQMMASTE
R

run control

STOP

Live periodical histogram transport over network

Dump histograms on shared memory
in files at run stopnewly implemented

done in
parallel

- Some disadvantages such as 1)TTrees are not collected,
 and 2) cannot ensure the histograms contain all events
 until the very end of a run.

Real Time Histogram Transport and New Histogram Store

RoI transport

- RoIs have to be sent to PXD readout (ONSEN) for the
 data reduction.

- RoIs are calculated by the tracking results in the HLT processing
 and placed in DataStore as one of the raw data object.

- They are collected in the output server of HLT and RoIs are
 extracted from the streamed object.

- The extracted binary are sent to ONSEN through the network
 connection.

FE
dig tx

tx rx
R/O
PC

~250 COPPERs~0.5M chan. ~40 R/O PCs Event
Builder

2
CDC

SVD

PXD
FE
dig

PXD readout box
(ATCA)

HLT
distributorE

vent B
uilder 1

100kB/ev reco
rder
reco
rder

200KB/ev
10kHz

FE
dig

1MB/ev

- PXD yields a large event sized data when occupancy is high (>1MB) and it cannot
 be processed by COPPERs, nor recorded without event reduction.
- Data size reduction by 1) extrapolate HLT-reconstructed tracks to the surface of PXD
 sensors (Region of Interest), 2) send the RoIs to PXD readout box, and 3) discard hits
 not in RoIs. -> 1/10 reduction is expected.
- RoIs are sent only for HLT-selected events, and the rate reduction is also applied.

RoI

30kHz

10kHz

100kB/ev

10kHz

100kB/ev

30kHz

RoI transport (RFARM)

hltout2merger

Destreamer RoI
extractor

basf2

Streamer

rb2mrb

1,4,7...

2,5,8...

3,6,9...

1,4,7...

2,5,8...

3,6,9...

RoI: 1, 2, 3, 4,

HLTOUT:
 1, 2, 3, 4,

mrb2rb

3 basf2's run in
different processes

* rb2mrb, mrb2rb, and hltout2merger distribute/pick up records in
 turn to/from ringbuffers/mqueues in the same order.

mqueue

mergermerge

ONSEN

hltwn1-3
hltout

rpc2

RoIPC

What was the problem in RFARM framework?

- Heavy dependence on RingBuffer + raw socket I/O.
 * RingBuffer is a home made tool utilizing old-fashioned UNIX IPC:
 Shared Memory and Semaphore.
 * The handling of IPCs is somewhat messy.
 + They remain even after the job exit.
 + Removal of IPC resource sometimes fails in the signal handling.
 + Unexpected IPC locking.
 => caused frequent operation stuck of HLT when stopping/aborting.

- Slow control was also home made and needs the interface to daq_slc.

- RoI extraction from streamed objects was complicated and slow.

- Initialization was done after the receipt of the first event.
 => ~30sec delay to start actual processing.

ZeroMQ HLT

- RingBuffers are replaced with ZeroMQ message transport.

- Initialization of processing is done when making the system
 ready (not at the time of receipt of the first event) by using
 modified version of basf2.

- RoI binary is embedded in ZeroMQ message as a separate packet.

- System control is integrated in the Belle II standard slow control
 package (daq_slc).

developed by Nils Braun

ZeroMQ message

Framework was switched
to new ZeroMQ based system

(2020-)

ZeroMQ

- An open-source package for the general message passing.
 -> Strong community support. Standard in HEP community.

- The usage resembles to that of the standard UNIX socket,
 but it has various functions.

- It supports “lock-free” 1-to-N and N-to-1 connection with a
 variety of connection style including load-balanced pipeline.

https://zeromq.org/

distri
butor

hbasf2
DataStoreZM

Q2
Ds

Ds2
ZM
Q

DataStoreZM
Q2
Ds

Ds2
ZM
Q

processing chain

DataStoreZM
Q2
Ds

Ds2
ZM
Q

processing chain

.....

processing chain

colle
ctorRaw

Socket
Conne
ction

Raw
Socket
Conne
ction

ZMQ
LoadBalanced
Connection

ZMQ
LoadBalanced
Connection

workers

hltin hltout

Data Flow on ZMQHLT

EVB1 STORE

fork()

hbasf2

- hbasf2 is yet another implementation of basf2 specialized
 for the use in HLT. Directly called from a python3 script.

- Main difference from basf2 is that it receives the event from
 hltin and sends output to hltout directly by each event process
 via load-balanced ZMQ connection w/o mediating input/output
 processs.
 -> Data flow is much simplified.

- When starting hbasf2, before forking out event processes, it
 performs all module initialization by sending a dummy event.
 -> It is done at “LOAD”
 -> Ready to process events promptly after run start.

hbasf2
DataStoreZM

Q2
Ds

Ds2
ZM
Q

DataStoreZM
Q2
Ds

Ds2
ZM
Q

processing chain

DataStoreZM
Q2
Ds

Ds2
ZM
Q

processing chain

.....

processing chain

workers

D
Q
M
2
Z
M
Q

D
Q
M
2
Z
M
Q
D
Q
M
2
Z
M
Q

final_histoser
ver

Streamed Histogram Objects

sh
ar
ed
me
m

hrelay

Confirmed
Connection

Histogram
Collection with ZMQ

proxy_
histoserv

er

- Histograms are
 transferred as
 streamed ROOT
 objects.
- They are collected
 in each worker and
 merged.
- They are streamed
 again and collected
 by final_histoserver.

hbasf2
DataStoreZM

Q2
Ds

Ds2
ZM
Q

DataStoreZM
Q2
Ds

Ds2
ZM
Q

processing chain

DataStoreZM
Q2
Ds

Ds2
ZM
Q

processing chain

.....

processing chain
coll
e

ctor
STORE

workers

hltout

Data Flow on ZMQHLT

RoI collection * RoIs are taken from DataStore
* Streamed DataStore and RoI
 are placed in separate ZMQ
 messages.

ROImerger/ONSEN

Streamed DataStore

RoIs

HLT software : body of HLT processing

- Deployment of HLT processing software is managed by Seokhee.

- “Online” version of Belle2 library is released by Giacomo every
 two weeks together with the update of database (online global tag).

- Whenever a new version is released,
 * Giacomo test it offline using the recorded raw data.
 * Seokhee updates cvmfs and database on the maintenance day.

- In most cases, the library update have been working well without
 serious troubles.

- But one bad experience was there. When one new version (after
 offline test passed) was deployed in HLT and started cosmic ray run,
 frequent seg-fault occurred. => caused missing RoI!
 -> took some time to fix the problem.

- Issues were
 * When seg-fault occurs, the worker process is not recovered and
 the processing power drops and the event is lost.
 * The test of library with massive raw data is not done because
 hbasf2 parallel processing cannot run offline.

- Seokhee is now establishing a full test bench to test a
 new version in real HLT setup with a real data flow.

- But the process recovery mechanism should be implemented
 in the framework itself.

- Offline test scheme of parallel processing on multicore should
 also be implemented.
 <- Previous RFARM framework utilized original offline basf2 as
 the core framework which has the parallel processing capability
 on multicore (w/ IPC RingBuffer).

New core framework

2. basf2 recovery in HLT processing

- In current hbasf2 framework, when one of the event process
 dies in the middle of processing (ex. seg fault),
 the event is lost and the process is not restarted.
 -> * Source of “missing events/RoIs”
 * Processing power is lost and not recovered.

- hbasf2 cannot be invoked as a stand alone application with a
 parallel processing turned on. This makes the offline debugging
 of HLT processing difficult for rare troubles.
 <- Original basf2 used in RFARM could do this, but it is based
 on IPC ring buffer.

distri
butor

hbasf2
DataStore

ZMQ2Ds Ds2ZMQ

DataStore
ZMQ2Ds Ds2ZMQprocessing chain

DataStore
ZMQ2Ds Ds2ZMQprocessing chain

.....

processing chain

colle
ctorRaw

Conne
ction

Raw
Conne
ction

LoadBalanced
Connection

LoadBalanced
Connection

workers

hltin hltout

Data Flow on ZMQHLT

EVB1 STORE

fork()

Idea of new implementation

- Keep the framework outside workers unchanged (ZMQ-HLT).

- Replace the framework inside a worker (hbasf2) with the
 improved original basf2 parallel processing framework.

- At the beginning of each event process, the event data are copied
 to a buffer, and it is removed when processed successfully.

- If the process dies, basf2 mother process moves the faulty event
 to the output buffer (with a bad-event tag) and restart a new event
 process.

- IPC RingBuffer should be replaced with a better implementation.

distri
butor

colle
ctorRaw

Conne
ction

Raw
Conne
ction

LoadBalanced
Connection

LoadBalanced
Connection

hltin hltout

STOREbasf2 w/
parallel processing

ZMQ
2Ds

Ds2
ZMQ

HLT worker (hltwkxx)

- A.Baur implemented N-to-1/1-to-N lock-free event transport
 using ZMQ IPC socket to replace RingBuffer in original basf2.

- In addition, the salvage mechanism of faulty event is also
 implemented using ZMQ broadcast.

- Parallel processing in offline is possible.

basf2 w/
parallel processing

ZMQ
2Ds

Ds2
ZMQ

ZMQ ZMQ basf2 w/
parallel processing

Root
Input

Root
Output

HLT Offline

basf2 process manager

DataStore
Rx Tx

DataStore
Rx Txprocessing chain

DataStore
Rx Txprocessing chain

.....

processing chain

Improved “basf2” data flow on a worker

fork()

DataStoreZMQ
2Ds Tx

ZeroMQ
connection
from
hltin

input path
DataStore

Rx Ds2
ZMQ

output path
dum
my
ROI

requeue unprocessed event
(w/o HLTtag) in output RBUFproc ID + data

proc ID + data
proc ID + data
proc ID + data
proc ID + data

Buffer for
 “events on the fly”

ZMQ
to
hltout

process dead

Remove event processed
successfully

Event salvage mechanism

event backup
buffer

normal
processing

backup event is sent to
output directly.

event process is crashed.

Test of ZMQ-basf2 in offline

1. Event flow with ZMQ-based connection

- Real HLT script (beam_reco_monitor) is used.

- SeqRootInput/Output modules to read/write pre-recorded
 raw data files replacing ZMQ2Ds and Ds2ZMQ modules.

- Minor bug fixes to the ZMQ-basf2 source (DQM related).

- Data file : Exp 26, Run 1968. One SROOT file from QAS.

- Process granularity : 70 (on a 40 core server)

HLT script used for the test

- Full CPU consumption is
 confirmed.

- No bottleneck observed in
 framework.

2. Test of salvage of faulty event

- Insert “TheKiller” module in the HLT processing script which
 generates various troubles in the processing. Seg fault was
 generated using this module at 10th event.

- The output file was examined and checked that the “faulty” event
 is properly transferred to the output.

- The restart of new event process after the seg fault is also
 checked.

Event processed normally.
SoftwareTriggerResults
is there.

Seg-faulted event.
Only RawData are
there with Empty RoI

Test bench with full data flow with 20 workers (HLT03)
- Input source : eb1rx is turned off. Instead, the raw data are
 fed into HLT distributor directly using “nc” on hltin.

- Output sink: storagerd is not used. Instead, the data from
 HLT collector are received by “nc”

- Full 20 worker configuration

- Controlled using “rcrequest”

- Just by “LOAD”ing the system, the raw data
 can be processed.

Replacement of hbasf2 with native ZMQ-basf2

- hbasf2 (as a python3 script) is directly invoked from hltworkerd
 and a minor modification to hltworkerd is necessary.
 daq_slc/apps/hltd/src/HLTWorkerCallback.cc

HLT script for the test with ZMQ-basf2

i# Local DB specification

basf2.conditions.override_globaltags()
basf2.conditions.globaltags=["online"]
local_db_path = constants.DEFAULT_DB_FILE_LOCATION

basf2.conditions.metadata_providers =
["file://" + basf2.find_file(local_db_path + "/metadata.sqlite")]
basf2.conditions.payload_locations = [basf2.find_file(local_db_path)]

Parallel processing

basf2.set_nprocesses(multiprocessing.cpu_count()-5)

save_objects = constants.ALWAYS_SAVE_OBJECTS +
 constants.RAWDATA_OBJECTS
basf2.set_streamobjs(save_objects)

Logging
basf2.set_log_level(basf2.LogLevel.ERROR)
Online Realm
basf2.set_realm("online")

Input path
path = basf2.create_path()
path.add_module ('HLTZMQ2Ds', input=argvs[1])

Histogram handling
path.add_module ('HLTDQM2ZMQ', output=argvs[3])

Body of processing
processing.add_hlt_processing (path, run_type=constants.
RunTypes.beam, softwaretrigger_mode=
constants.SoftwareTriggerModes.monitor)

Output path
path.add_module ('HLTDs2ZMQ', output=argvs[2], raw=True)

Monitoring
path.add_module ('Progress')

Run
basf2.print_path (path)
basf2.process (path)

The same ZMQ I/O and DQM
modules used in hbasf2

ZMQHLT data flow monitor

* All the workers are fully
 working.

- Confirmed to work stably more than a few days with repeated
 use of a portion of recorded real raw data.

- The last step is the implementation of on-the-fly switching
 mechanism between hbasf2 and zmq-basf2 in hltworkerd.
 -> mixed-operation of two frameworks unit-by-unit becomes
 possible. Maybe necessary at the first debugging stage
 of new framework in beam run.

- Plan: complete the development by the end of this year
 and submit a PR to merge mods in Belle2 library/daq_slc.
 => Test in GCR/HRT from early next year.

Backup Slides

FE
dig tx

tx rx
R/O
PC

~250 COPPERs~0.5M chan. ~40 R/O PCs Event
Builder

2
CDC

SVD

PXD
FE
dig

PXD readout
box

(ONSEN)
HLT

distributorE
vent B

uilder 1

100kB/ev reco
rder
reco
rder

FE
dig

1MB/ev

RoI

30kHz
10kHz

10kHz

100kB/ev

30kHz

RoI feedback to Pixel Readout
- The results of tracking using Silicon Vertex
 Detector(SVD) and Central Drift Chamber(CDC)
 are extrapolated onto the surface of PXD and
 boxes (Region of Interest:ROIs) are defined.
- The coordinates of ROIs are sent to PXD
 readout and only the hits in the boxes are saved.
- The reduction factor is expected to be better than 1/10.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

