Summary of slow-control till LS1

DAQ

December 1, 2022 Belle II TRG/DAQ Workshop 2022

Brief summary

After the slow-control group dissolved, no intense development

Remaining/on-going topics

- Development related to the PCIe40 integration
 - Discussed yesterday
- Renovation of the detector control system
 - To be discussed in the latter part of this session
- NSM2-related errors
- Software instabilities
 - Need debugging not only by a single person but in a more collaborative way
- More automatic/convenient recoveries
 - To stack up tolerable errors into a list during a run, then perform a recovery at a next run stop (e.g. due to beam dump)
- Clean-up of log-messages
 - Modifications ready & under review

Log-messages

+ proper category (sub-system) assignment ++ clean-up (proper severity, aggregating of a burst)

Stack up tolerable errors

By Junewoo Park

4

- I try to improve the auto-mode
- Simple test was done with Kunigo-san

Our efficiencies

Period	Time based efficiency	Luminosity weighted efficiency	Good-data-quality efficiency
February 21 - June 22, 2022	87%	87%	86%
October 19 - December 23, 2021	87%	87%	87%
February 16 - July 5, 2021	90%	89%	88%
October 19 - December 18, 2020	89%	88%	87%
February 25 - July 1, 2020	84%	87%	86%
October 18 - December 12 2019	(Not monitored)	(70%)	(66%)
March 25 - June 15 2019	(Not monitored)	(67%)	(67%)

- Data-taking efficiencies reached a plateau (85-90%)
- Official target is at 90%
- Even 1.0 % is very expensive in terms of time, money, manpower, energies...

We should achieve higher efficiency after LS1 and further higher after LS2

- We'll overview some visualisations to seek for further improvements
- Only for 2020ab, 2020c, 2021ab, 2021c, and 2022ab runs
- Only online information used without precise correction, thus the results differ from the offline calculation by a few percent

2020ab run

2020c run

2021ab run

2021c run

2022ab run

Evolution of cumulative efficiencies

Delivered cumulative luminosity [fb-1]

11

Run duration

Run stoppers categorised by sub-system

TTD errors 2020ab

TTD errors 2020c

TTD errors 2021ab

TTD errors 2021c

TTD errors 2022ab

To where we should assign resources?

Machine learning

Why machine learning?

- Forecasting
 - We can catch "sign"s of errors and predict future errors
- Root Cause Analysis in DevOps
 - We still have multiple "UNKNOWN" errors
 - Massive multi variate approach by clustering, periodicity, etc
- (Machine Learning in SIEM)

Tracks in the inter-experiment machine learning workshop

- 1. ML for object identification and reconstruction
- ML for analysis : event classification, statistical analysis and inference, including anomaly detection
- ML for simulation and surrogate model : Application of Machine Learning to simulation or other cases where it is deemed to replace an existing complex model
- 4. Fast ML : Application of Machine Learning to DAQ/Trigger/Real Time Analysis
- 5. ML infrastructure : Hardware and software for Machine Learning
- 6. ML training, courses, tutorial, open datasets and challenges
- 7. ML for astroparticle
- 8. ML for phenomenology and theory
- 9. ML for particle accelerators
- 10. Other

Feasibility study?

- Machine learning in Elasticsearch
 - Convolution of multiple techniques (e.g. Clustering, various types of time series decomposition, Bayesian distribution modelling, Correlation analysis etc)
 - Expensive (O(M JPY/year))
 - Feasibility study started in a simple setup (e.g. using pycaret)

Elasticsearch	Initiated
	Initiated
\mathbf{I}	Initiated
ROOT/CSV files	'quit' otherwise.", layout=Layout(width='100%')) Data Type sepal length (cm) Numeric sepal width (cm) Numeric
	petal length (cm) Numeric

Can we use this group space?

ccw06 /group/belle2/group% ls
computing/ detector/ physics/ production/
ccw06 /group/belle2/group% cd detector/SLOW/
ccw06 /group/belle2/group/detector/SLOW% ls
archiver/