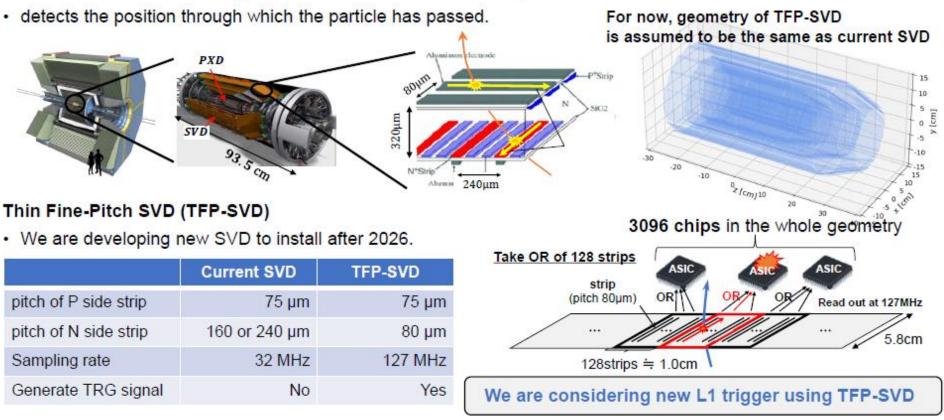
TRG upgrade 2022/12/2 T.Koga

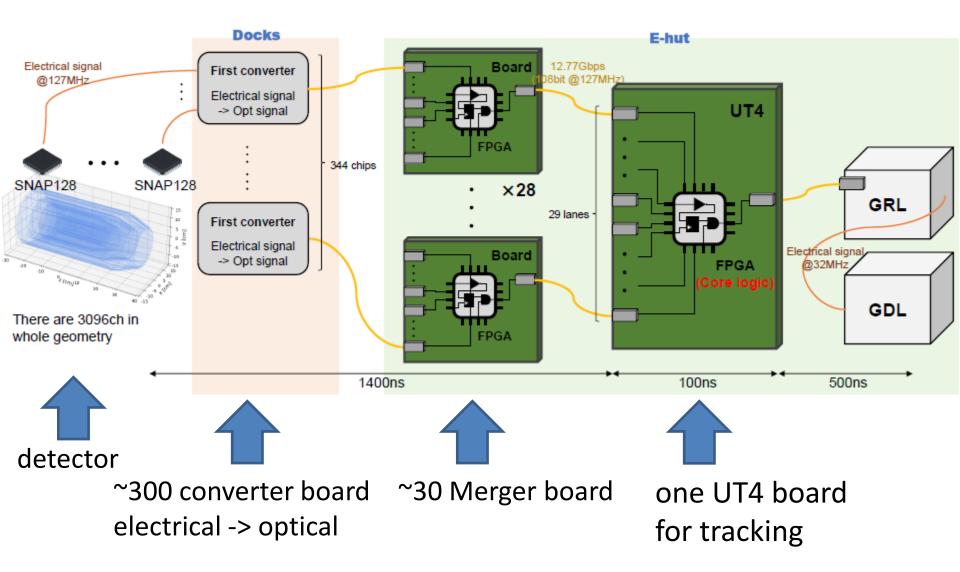
Motivation

- -TRG upgrade plan in LS2 and beyond
 - -VXDTRG
 - -CDCTRG
- -ECLTRG
 - -Increase latency
 - -(UT5)

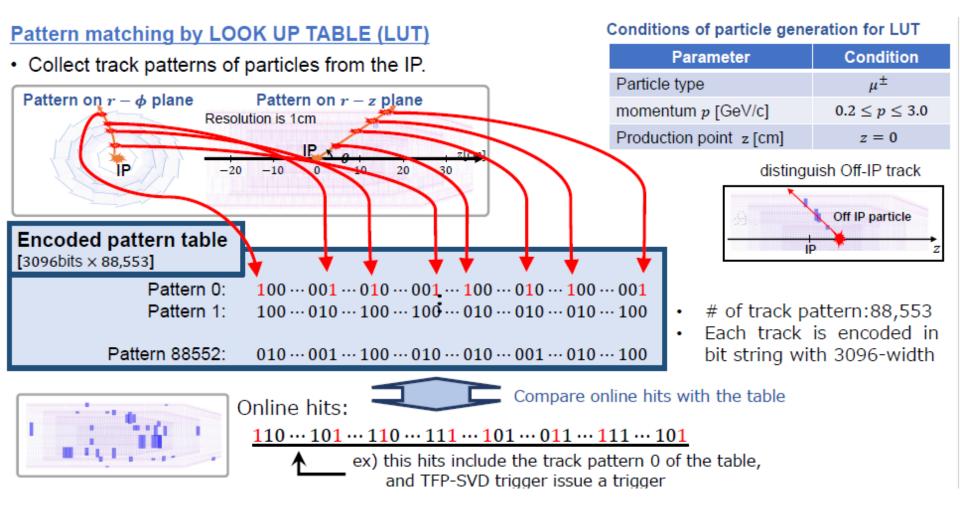
VXDTRG


-With VXD upgrade, we can implement VXDTRG

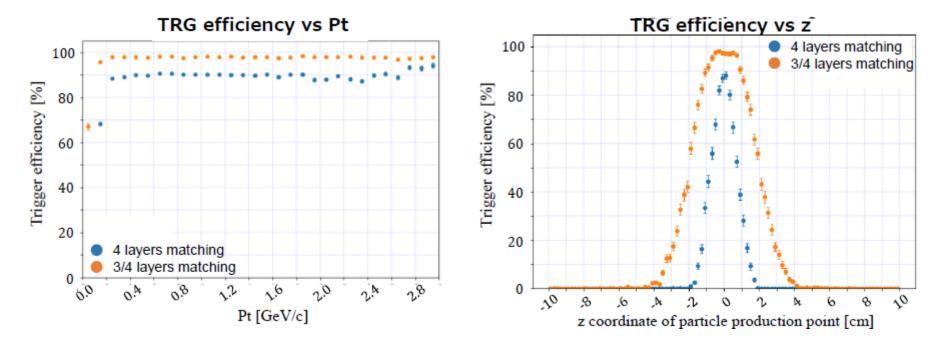
-Purpose: beamBG rejection with |z| measurement

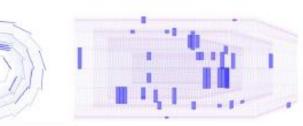

-<u>R&D</u> of VXDTRG logic is on-going with TFP-SVD by Shimasaki-san

SVD

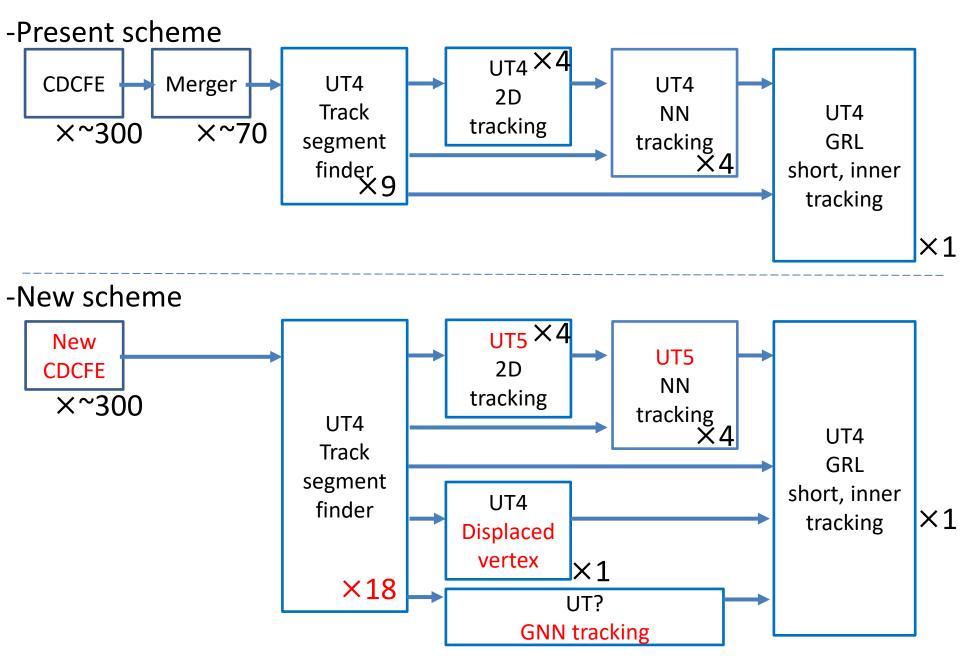

· the double-sided silicon-strip detector located in the innermost part of Belle II detector.

VXDTRG dataflow


VXDTRG track reconstruction logic


VXDTRG expected performance

-Tracking performance is studied with a particle gun -High efficiency


-|z|< 2~4cm cut can be applied

-Fake track probability is studied with beamBG MC -~1% fake track per 8ns with 4 layer matching -~10% fake track per 8ns with 3 layer matching

CDCTRG

Upgrade of CDCFE and CDCTRG

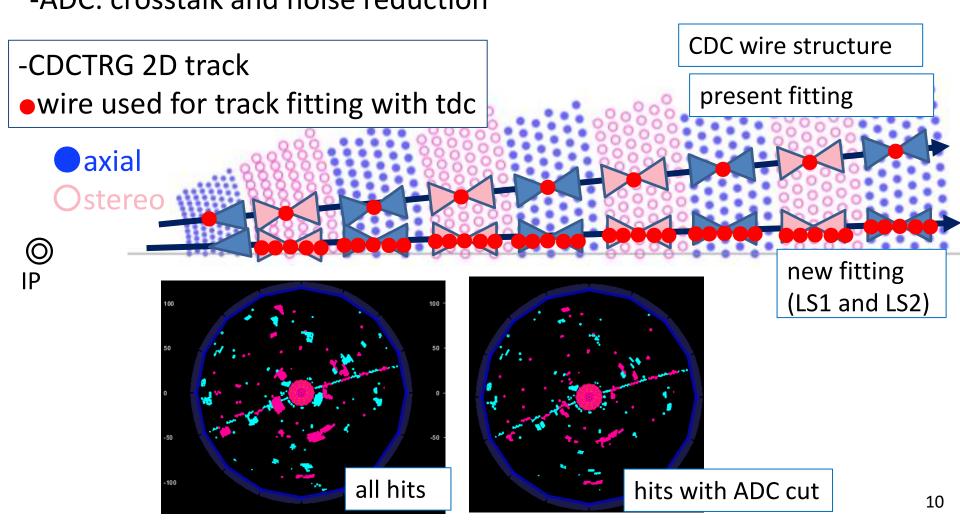
-Optical transceiver speed will be improved with new CDCFE -To use the high speed, receiver side (MGR) need to be upgraded too ->We plan to bypass the MGR and connect TSF directly

		speed per lane	#lane per CDCFE<->TRG	#bit/32MHz/CDCFE
Present CDCFE		3.2Gbps (2.5Gbps with 8b10b)	4	256
New CDCF	E	10.3Gbps (10Gbps with 64b66b)	2	512
	Present	configuration	New configu	ration
1 boards 9 links	↓ Event Time	Front-end GTP Merger GTX GTX GTX SF Sounds 292 boards 292 links 9 boards 70 links GTH 2D Tracker 4 boards 36 links		Front-end 292 boards 1168 links 584 links 584 links UT4 20 boards TSF 9 boards 70 links GTH 2D Tracker 4 boards 36 links
		GTH 3D Tracker 8 boards 8 links		GTH 3D Tracker 8 boards 8 links 8

Merit of high speed

-With the higher speed, we can send TDC and ADC of all wires to CDCTRG

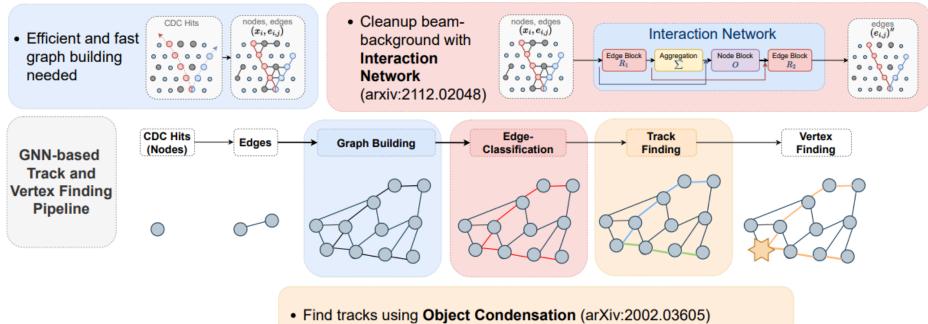
29 28 27 26 25 24 23 22 21 20


Figure 10: Part of CDC outer SL inside wire cell configuration [6].

Data from a CDCFE to CDCTRG

	data	#bit/32MHz/CDCFE
Present	 -hitmap of 5/6 wires -tdc of part(~1/6) of wires (2ns) -fastest tdc among all wires -edge information -clock -total 	48 (40)bit 5bit × 16wire=80 5bit × 16wire=80 10bit 9bit 227bit < 256bit
New	 -hitmap of all wires -tdc of all wires (2ns) -adc of all wires (4bits) -clock -total 	48bit 5bit × 48=240 4bit × 48=192 9bit 489bit < 512bit

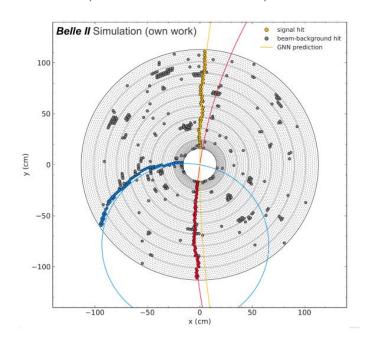
Upgrade of trackers


With the higher speed, we can send TDC and ADC of all wires to CDCTRG
 Great potential for BG reduction and efficiency improvement for future
 TDC: increase fitting points (x5) to improve z resolution
 ADC: crosstalk and noise reduction

CDCTRG GNN

-<u>Lea</u> and <u>Philip</u> started R&D of tracking and vertex finding with Graphical neural network

-With CDC wire, track finding, fitting and vertex finding are performed.

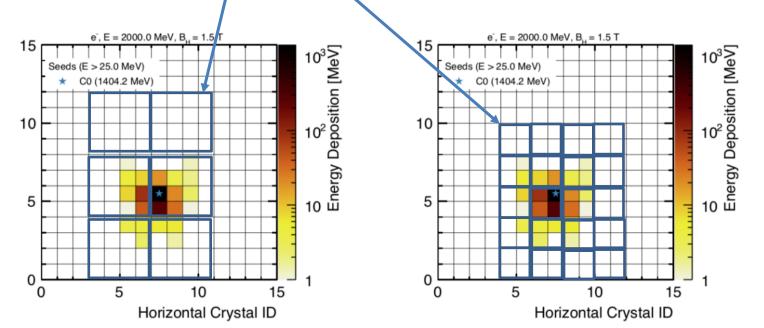

• Goal: predict Track Fitting parameters and find condensation points

CDCTRG GNN

-Training and performance evaluation are on-going at offline at first, without think of level1 trigger constraint (all CDC hits, ADC, TDC are used without considering latency and FPGA)

Found Tracks in Event	GNN (offline) ^a	TRGCDC2DFinderTracks	TRGCDCNeuroTracks	RecoTracks
Only signal tracks	91.5%	94.0%	93.8 %	90.6 %
Missing signal tracks	2.1 %	5.6 %	5.6 %	0.02 %
All signal tracks and additional tracks ^a	5.9 %	0.4 %	0.6 %	9.38 %
Missing signal tracks and additional tracks ^b	0.5%	0.01%	0.0 %	0.005 %
Per Track				
Efficiency	97.4%	94.4%	94.4%	99.98%
Precision	95.8 %	99.8%	99.7%	93.3%

- -The offline tracking looks succeeded
- -Plan to consider how to implement the logic to FPGA


ECLTRG

-Unno-san's talk

- -During LS1, we plan to do performance evaluation of ECLTRG with future high luminosity and BG by using MC
- -Investigate possible issues, and determine long term upgrade plan to solve the bottolneck.
- Background study
 - BGOverlay logic for both MC and random data
 - Performance study for MC and data
 - Consistency study between MC and data
 - Based on the results, make a strategy for high luminosity and bkg conditions (for both after LS1 and LS2)

ECLTRG plan after LS1 and in LS2

- Try to separate two energy deposition in one TC (if necessary) ?
 - If two signal peak positions are >500ns, it would be possible
- New ShaperDSP ?
 - Currently 576 ShaperDSPs in 52 9-VMEs around Belle2 detector
 - Alex is planning to upgrade ShaperDSP
 - · Some studies are in progress in BINP (the status not shown anywhere)
 - · For ecl trigger, any requests and the meaningful improvement ?
 - "TC" timing can be improved if cell-by-cell timing adjustment in each TC is possible, but bad resolution is mainly from low energy TC
 - · Any merit if logic of FAM can be implemented in new ShaperDSP ?
 - TC with from 4x4=16xtail to 2x2 if it improves some performance?

L1 Latency

-Present L1 latency is limited by SVD

->If VXD is upgraded, we can enlarge latency.

If ~1µs latency increases, we can implement a UT4 for new logic.

-<u>Next bottolneck</u> is KLM RPC, ~5.2µs.

-FPGA resource of SCROD is occupied, and we are not sure if buffer size can increase or not (at present there is no FW expert)
-Need dedicated study, or upgrade of electronics.

Detector	Maximum L1 latency	Contacted Expert
PXD	%Rough estimation ~3times larger than now. At present 50 look back (unit=104ns) is used, it may go up to 191.	Bjoern Spruck
SVD	5.0µs (now) ~10µs in future with the upgrade of detector and FE	Katsuro Nakamura
CDC	~15µs+more, depending on FPGA resource and IP core	Yu Nakazawa
TOP	~9µs tested, just under 1 accelerator revolution = 10 µs should be possible, maybe 12 µs with larger FW changes. More would be very difficult without hardware upgrade, ring buffer has limited size.	Martin Bessner
ARICH	At present 56clk (1clk=15.7ns) depth buffer is used. The depth can increase depending on FPGA resource. We tested 112clk depth, it looks fine. Thus, 10~15 us latency is possible.	Yun-Tsung Lai, Kenta Uno
ECL		Mikhail Remnev, Alexander Kuzmin
KLM	16µs for scintillator 5.2µs for RPCs, need confirmation	Christopher Ketter

Summary

-TRG upgrade plan in LS2 and beyond

-VXDTRG

-add VXD to TRG with upgrade of VXD

-CDCTRG

- -send ADC and TDC of all wires from new CDCFE to CDCTRG
- -update of tsf, trackers
 - -GNN based tracking approarch

-ECLTRG

- -perform simulation study for future high luminosity and BG during LS1 to consider possible upgrade in LS2
- -with new shaper DSP, smaller size of TC can be used to get cluster shape

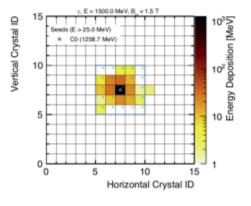
-Increase latency

-SVD is present bottolneck and KLM is the second. Need investigation for KLM.

backup

-

-https://indico.belle2.org/event/1307/sessions/378/attachments/3070/5670/mmilesi_ECLPid_B2SKW_2020.pdf


4. Overview of ECL clustering

Simulation of single particles' energy deposition in a 15x15 ECL crystal array (pre-clustering):

γ

- Radially symmetric shape
- Usually contained in

5x5 cells

• Similar shape of γ

е

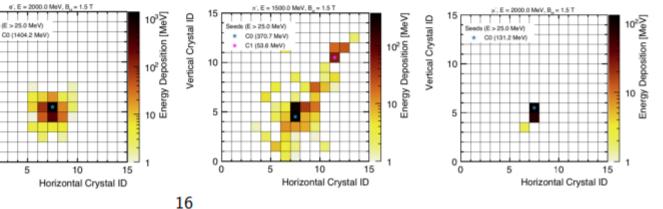
Less symmetric

15

10

0

(*B* field bend, brems γ emitted before the ECL)


- Ionisation loss contained
- in 1-2 cells.
- Asymmetric lateral spread

due to hadronic interactions

π

μ

- Pure MIP behaviour.
- <*E*_{cluster}> ~ 200 MeV

