## New Technology for Data Transmission and Plans for UT5

Yun-Tsung Lai

**KEK IPNS** 

ytlai@post.kek.jp

Belle II Trigger/DAQ workshop 2022 @ Nara Women's University 2nd Dec., 2022





### Outline

• A brief overview for data transmission in HEP experiment

Versal project in KEK and Japanese HEP community

FPGA selection for UT5

Other discussion

Summary

### Data transmission

- Transfer data from device A to device B.
  - Based on the selection of A and B, we have different options on the interface in between.

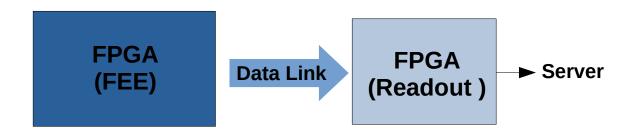
• If we transport guinea pigs, "guinea pig bridge" is a safe and convenient way:





source: youtube

### Data transmission in HEP experiment

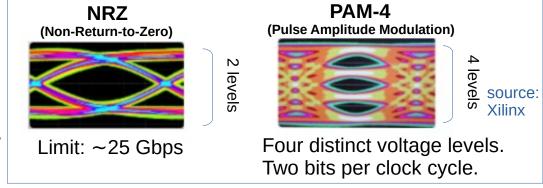

Two cases in general.

#### FPGA - FPGA:

- Optical link with FPGA MGT and optical modules.
- Different encoding based on protocol design purposes.

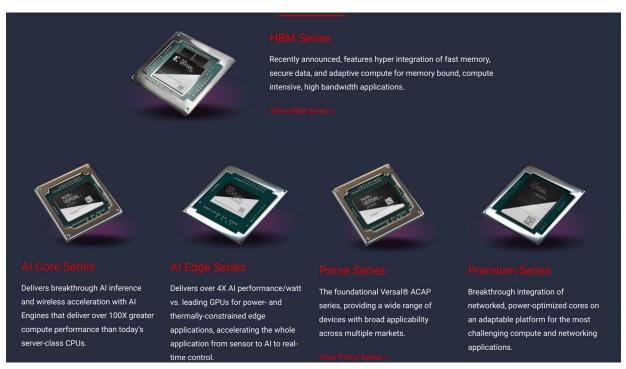
#### FPGA - server:

- Data transmission and system slow control.
- GbE, PCI-express, VME, etc.
- PCI-express is the most popular one nowadays: PCIe40 in ALICE, LHCb, and Belle II.
- General studies on possible new options are helpful in the future.
  - But practically, a clear target or a chance is needed.




# New thechnology for data transmission

- For the optical transmission between FPGA and FPGA.
- NRZ: Limit of line rate is 25~30 Gbps.
  - UT4 (UltraScale GTY) shows stable operation at < 16 Gbps.</li>
  - Above it, bit error starts to occur frequently.
  - Similar result observed in ATLAS system due to their hardware device.


#### • PAM-4:

- Four distinct voltage levels.
- Application: higher error rate.
  Need careful firmware treatment:
  Gray code, new encoding,
  CDR, clock compensation.
- Xilinx UltraScale+: up to 58 Gbps. Versal premium: up to 112 Gbps.
- Need 4\*100 Gbps QSFP.
- · Pioneer to study it in HEP community.
- In addition, PCIe gen6 also utilizes PAM-4.



# Versal project


- In KEK and Japanese HEP community, there is a Collider Electronics Forum for common and general studies on new associated technology for future development.\
- One of the plan is the Versal FPGA project.
  - Versal: One of the latest Xilinx FPGA generation.
  - We are able to purchase some evaluation kit for study purpose.



source: Xilinx website

#### Features of Versal and UltraScale+ series

- If we talk a look at both Xilinx Versal and UltraScale+, the features of different series:
  - Al engine: convenient interface to implement ML core into firmware.
  - High Bandwidth Memory (HBM).
  - FPGA with larger number of cells.
  - High bandwidth for data transmission.
- Each feature is orthogonal to each other.





source: Xilinx website

# Belle II Universal Trigger boards

- Belle II Universal Trigger boards:
  - UT3: Xilinx Virtex-6, HX380T,565T
    - GTX 6.2 Gbps\*40, GTH 11.2 Gbps\*24.
  - UT4: Xilinx UltraScale, XCVU080, XCVU160
    - GTX 16 Gbps\*40, GTY 25 Gbps\*32.
- Interface:
  - QSFP optical link.
  - · Lemo and RJ45 for clock input.
  - LVDS.
  - VME 6U: Power, slow control, flash memory access.
- Designed for general purpose to implement various L1 trigger algorithm.
   Have been working from phase 2.
  - Charged tracking (2D, 3D, Neural-3D), Calorimeter clustering, Event timing, muon chamber, global trigger, etc.





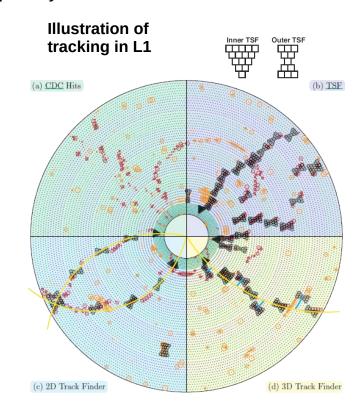
UT3

UT4



AVAGO HFBR-7934WZ 3.125 Gbps/lane




AVAGO AFBR-79Q4Z 10 Gbps/lane



Taiwan company CENTERA Photonics, Inc. 100G-SR4 25 Gbps/lane

#### Consideration for the new UT

- Improvement on tracking is one of the plan with higher priority.
  - · Not only for tracking.
- Present design:
  - 2D: Hough transformation using 5 axial SL of CDC.
  - 3D: Fitting method together with 4 stereo SL.
  - Neural-3D with pre-trained neuron in block-RAM in FPGA as LUT.
- For new ideas for tracking:
  - More wire info, including ADC, 3D Hough, track with displaced vertex etc.



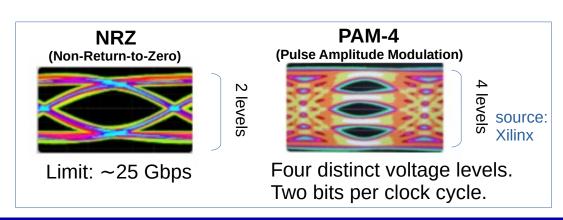
## Consideration for the new UT (cont'd)

- A simple summary in a perspective for TRG algorithm:
- If we want to make our HDL algorithm in the same way for finding/fitting:
  - Better precision, additional info, additional dimensions.
    - Larger FPGA and higher data transmission rate are desired.
    - Also, latency should be in the same level.
- · If we want to utilize machine learning:
  - Just like the present Neural-3D in CDCTRG: Pre-trained neuron into FPGA LUT.
    - Large FPGA, larger memory (on-board or extended), or HBM are desired.
  - Implement the ML core using the new AI engine features.
    - FPGA series with those features are desired.

# Consideration for the new UT by T. Koga-san

### UT5 development idea

slide by T. Koga-san


- -Fix issues on UT4
  - -GTH laser is not working with 127MHz reference clock
  - -VME communication is failed when UT4 is installed to VME crate
    - -failure rate increase with multiple UT4s in the same crate
  - -Maximum optical speed is not achieved due to bit error or unstable link
    - -operated with ~half of maximum rate (12Gbps/10Gbps for GTY/GTH)
- -New feature
  - -Versal or Vertex Ultrascale+ FPGA?
  - -Large resource (~5-10 times larger than UT4)
- -High optical speed (25-60 Gbps?)
- -In the case of Versal, machine learning related feature
- -VME is OK in terms of power consumption? New platform is needed?
- L-Can we develop the new board with ATLAS?

# FPGA resource

| FPGA              | # of cells (K) |
|-------------------|----------------|
| XC6VHX380T (UT3)  | 382            |
| XC6VHX565T (UT3)  | 566            |
| XCVU080 (UT4)     | 780            |
| XCVU160 (UT4)     | 1621           |
| Versal AI Edge    | 44-1139        |
| Versal AI Core    | 540-1968       |
| Versal Prime      | 329-2233       |
| Versal Premium    | 833-7352       |
| Versal HBM        | 3837-5631      |
| UltraScale+ HBM   | 962-2852       |
| UltraScale+ 58G   | 2252-3870      |
| UltraScale+ VU19P | 8938           |

#### FPGA series with PAM-4

- If we would like to study PAM-4 using Xilinx evaluation kit: GTM transceiver supports PAM-4.
  - VPK120 kit with VP1202 FPGA of Versal Premium series.
    - GTM up to 112 Gbps using PAM-4.
    - GTM up to 58 Gbps for both NRZ or PAM-4.
    - PCIe 5.0 with GTYP.
  - VCU129 kit with VU29P FPGA of UltraScale+ 58G series.
- Good chance to perform general study on PAM-4 with the device
  - We can be the pioneer to use it in HEP experiments.
  - Design general-purpose protocol firmware: Lots of firmware work.
  - Helpful for experiments to reduce the time for development.







#### Other discussion

- PAM-4 could be a good option for new UT for L1 TRG.
  - Needs more considerations: Perhaps not in UT5, but in UT6.
- How about DAQ link (FEE → Readout)?
  - In present experiments: < 10 Gbps.</li>
  - FEE: different considerations, such as # of detector channels, radiation tolerance, etc. So, FPGA is not required to be that large usually.
  - PAM-4 might be too early for DAQ link.
    - Its performance under irradiation environment is also an interesting study.
  - They study on PCIe 5,0 could be helpful for new readout device development.
- Still something to do for UT4: The limit of ~16 Gbps.
  - Further investigation on hardware (QSFP, GTY) and firmware (GTY IPcore), using oscilloscope, etc.
  - · Custom encoder design.
- Other than GTM (with PAM-4):
  - https://www.xilinx.com/products/technology/high-speed-serial.html
  - Different options can be considered for UT.
    - Versal<sup>™</sup> ACAP GTY (32.75Gb/s): Optimized for latency and power reduction.

## Summary

• PAM-4: New technology for data transmission.

- The development of new UT for L1 TRG purpose:
  - Utilization of PAM-4: With Versal FPGA project.
  - For new UT, the selection on FPGA still requires various considerations.

- Other discussion:
  - What we can do with Versal FPGA, not only for new UT.
  - Still something to do with UT4.