FTSW4 development status

Mikihiko Nakao (KEK)

mikihiko.nakao@kek.jp

2022.11.30 Belle II Trigger/DAQ Workshop 2022

Introduction

FTSW4

- Next generation FTSW with fully optical inter-rack connections
- Compatible with FTSW3 for short CAT7 connections
- Cost effective solution with low-end FPGA with maximal I/O

Outline of this talk

- Motivation
- Part selection progress
- Board layout plan
- Use case for CDC FEE upgrade

Motivation

Solution to the CAT7 problem

- = Up to \sim 100mV noise on inter-crate CAT7 cables (\leq 1m CAT7 is still fine)
- No further improvement is expected, b2tt over fiber would be a solution

Upgrade opportunity for the new CDC FEE

- Large number of FEEs (299), unchanged
- JTAG should be faster (now: 41M bits/FEE \rightarrow new: 91M bits/FEE)
- Opportunity to deliver b2tt to CDC FEEs over fibers, if we have a high-density optical FTSW
- Opportunity to implement a backup route of clock, b2tt, belle2link on multi-port transceivers

By-products

- High-density optical FTSW can be directly connected to optical fiber version of PCIe40
- Intermediate FTSW for KLM and ARICH may be removed
- (need a new route to reprogram on-detector TOP FTSW3)

Part selection (FPGA and VME)

Except for FPGA, devices are chosen from those available in market stock

FPGA

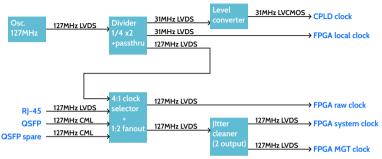
- No Xilinx FPGA in the stock, need a VERY long delivery time
- Large number of general I/O pin is needed
- Considered: Spartan-7, Artix-7, Artix-Ultrascale+
- $\,$ Artix-7 has the largest number of I/O pins (400 pins), although it is still marginal
- Choice: Artix-7 XC7A200T-1FBG676
- 2 chips from unofficial market place in hand
- 2 from official distributor to be delivered in May 2023
- No secondary FPGA (simpler than FTSW3!)
- Configuration flash memory
 - Micron MT25QU128 (or other product)
- CPLD and VME I/O
 - > XC95288XL-7TQG144C as a 5V tolerant CPLD for VME interface
 - IO-bit DIPSW to set the address
 - With just 5 more LVCMOS/TTL chips to form the VME interface

FPGA pin counting

- Artix-7 I/O pins
 - \rightarrow 400 I/O pins are divided into 8 banks \times 50 pins (up to 24 LVDS pairs)
 - LVDS I/O requires 2.5V VCCIO, other I/O requires 3.3V VCCIO

LVDS pin counting

- Ourrent design uses 118 LVDS pairs
- \odot In principle, they fit in 5 banks with 2.5V VCCIO, leaving 150 I/O pins with 3.3V VCCIO
- Fully utilizing the pins is quite a challenge


(below is one of my earlier trial, 98 LVDS pairs from 5 banks in 3 layers, not optimized)

S.			5									•		٠		۰			٠		140					0
÷	S		5	õ	ā	ē									۰	õ	2	8		6	8	-	(a	5		
٠	2			8		le,					۰		•			ò	ø	a	e	°o	۲		c	5	'n	
÷	3			6		Ċ.	e								۰	ø	ø	٠	٠		•	k	٠	٠	ŝ.	0
٠	э			0			(e	0				•		٠	•	ø	٠	٠	.0	٠				٥.	٠	•
ø	Y		b)	ø	2	Q2	()e	٥	0					.0	0	X	ø	٠	ø	0	0	2	٠	e.	1	80
٠	4							Ç,		۰	۰,	.0	ø	36	0	σ	٠	ø	•		۰			٠		0
٠	3			0					۰						σ	۲	ø	С	ø		۰		ю		o	•
0	3		2	0	2	0	2	္စ	R	٠			œ	9	ø	o		٠	0	0	ю	0	•	٠	•	•
0	3		2	8	0	ς.	2	0	,e	00	ø	2	0	8	σ	σ	۰	ø	ø	0		e	ς.	œ	.0	
9	2		9	2	•	æ	2	0	18		ő	0		, e	9	o	•	•	e	0	.*	•	9	•	्	0
9	2	١.	Þ	9	9			8	0	ιœ	Q	æ	0	•		0	9	9	9	.0	۰.	s	9		<u>.</u>	.•
9	1		2	2	8				1		2	2	0	2	ø		2	2	2	9		2	e.	2	æ	
2	2	2	2	2	5				9	9	2	9		2		2	9		3			2	12	2		2-
2	2		2	9	2	۰.			2		2	8		2	2	å	2	9	2		•	2	5	2	•	
2	2		1	2	2	3			3		2	ě		2	2	2	2	2		•	୍ଦ		2.1		•	
z	2		2	z	2				2	m	2	2	ŏ	2		z	2	-	2		•	2	1	1	2	- C
ž	2	1	ŝ	2	č				2		2	ě		2	ž	ž	ž	2	2	2	2	2	٥.		2	-
ă	i		5	š	a				ā		ő	ŏ		8	÷	ŏ	ä	a	a	2	•	2	24	2	1	
	2		2	ž	2					. "	1	1	-	ő	5	6	1	1	1	•	2		2	6	•	0
ő	ŝ	i.	5	ā	ā	4	1		ā			•		ä	m	ä	ā	ñ	-		്	6	6	•	۰.	.
õ	ł		b	õ	ā	4	ē								ö	ē	ē	ē	÷	ē	10	6		ē	2	0
ó	6	ŝ	6	é		ē			e		۰		0			ø		÷			0		20	ie.		0
0	é		D	۰		e									۰	۰	۰	٠	8				0	0	٥	•
ö	×.	5	ò	÷	â	e.		•		۰		0		۰		ò		٠	6	•	°o	5	10	6	•	30

ŝ.		d	ł	٠	ł	4						•				é.	÷	ł	e.	4	i a					•
5	5		5	ė	ā	i.						-		-		õ	2	'n	1			6			۰.	1
2	5		K	2	v						•		•			ā	æ	7			0		1	67	۰.	٩.
5				v	s	e.									۰	ā	2	2	2	e	2	ŕ,	r.	1	e	1
÷					s	5	ė	10	. 0			•		۰	é	è,		1	1	1	6	2	2	۰.	2	۰.
õ				8										ō	ō	2	6	•	6	e.	°e	e.	6	ι.	6	ie.
٠								Ŷ		e.	.0	۰,	ø	26	0			'n	Ĉ.	Ĉ.		٥.	ĉα	ĉ.	٥.	i.
ė,		ê	i,	•	'e			Ŷ	Ç0							o		è	Ċ0	Če	ĉ	e.	¢.	c	(o	•
•	e	ð	ń	0	÷.	0ê	Ű.	0	ñx.	÷			ď	ø	ø	0	20	٠	¢.	Čē	6	Č¢,	6		Ċø.	ie.
ø	6		5	8	0	e.	0	Ç,	ø	0	ø	2	0	8	0		Ö	e	(4		64	6	С	(a	٠	
8	4		þ	۰	٠	(e	Č.) e	ů8	٠	ø	ò	ĨQ.	0	0	o	٠	0	(e	(e	Č4	8	6	ંગ	(o	ိုစ
0		Õ	D)	۰	•	0	Č.	18	0	0	۲	۲	0	0	0	0	۰	8	(e	ĩ.	č.	Ç,	(e	۰	6	
0	4	0	0	٠	8	0	6	• •	18		ø	œ	0	٠	Ø	0		0	e.	(6	0	0	ς.	60	68	•
٠	Q	1	•	٠	•	4	•	•	0	00	ø	æ		٠	0	۰	0	۰	6	0	¢.	6	6	0	œ	
۰	4	1		0				• •	18	. 0	.0	æ		٠		.0	۰	0	18	ς.	0	х.	с.	(0	0	
۰		1	P	۰	•	8	1	•	0	.0		ŝ	۰	٠	٠	۲	۰	9	0	ς.	ÇC,	Ç.	Ç.	۰	ွစ	8
•			8	0	9			• •	. 8		æ	0	0	٠	٠	۰	0	9	х.	κ.	ς.	ь.	18	6	۰,	.•
•	2	1	2		9	•	9			0		2	.0	2		۰	2	2	κ.	2	ς.	х.	ς.	٠	6	2
9	•		2	•	2		0	2			œ	9	- 99	٠	2		œ	5	۶.	ν.	ο.	<u>و</u>	۶.	ч.	6.	2
2	2	1	2	Ŷ	2	1	1		2	۰	۰	•	•	2	2	2	2	2	1	8	۰.	6	5	2	6	2
÷.	2	Ľ.	2		2		2	÷	9			•		2	2	0	2	2	2	۵.	0	έ.	2	5	٥.	.9
2	2	ł	2	2	2		2							۴	2	2	2	2	ē.	ē.	ē.	ð	13		ь.	2
2	2		2	2	~			۰.							*	2	2	2	2	5	6	6,	5.	5-	1	6
2	2		2		2	12					•				-	2	2	2	8.	٥.	0	6	52	22	۰.	12
2	2				2	12						~			٣		2	2	3	6	۰.	ō.	2		٥.	
				•	٠	٠		e		٠		•						-						•••		

Part selection (clocking)

- Oscillator: KDK KEM35AT-L 127.216MHz
- Divider+passthru: SY89873L
- Level converter: DS90LT012ATMF
- Selector (4:1) + fanout (1:2): SY89547LMG
- Jitter cleaner: CDCE62002

3.3V device only

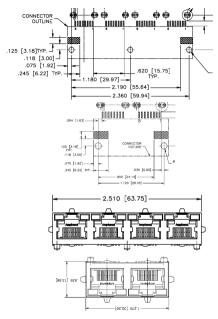
6 /12

Part selection (power)

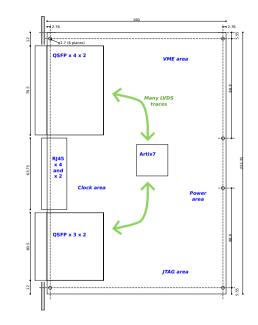
3.3V from 5V of VME

- Originally considering a DC-DC converter with multi-voltage output
- Changing the design: use 3.3V only device other than FPGA
- Confine the other voltages only near the FPGA
- Large-current 3.3V DC-DC suggested by Dima: LMZ10505
- External 3.3V
 - Option to use JO connector of KEK-VME, and from a on-board terminal (same as FTSW3)
- **2.5V, 1.8V, 1.2V, 1.0V**
 - Only for Artix-7, use reliable LDO regulators (same as or similar to FTSW3)
 - 2.5V (VCCIO for LVDS): LT1963
 - 1.8V (VCCAUX): LT1963 or LT1761
 - 1.2V (MGTAVTT): LT1963
 - 1.0V (VCCINT, MGTAVCC): TPS74401

Part selection (connector)

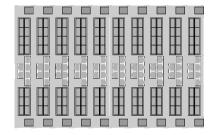

No optional daughter card (no FMC)

QSFP


- Current trend is into high-end O(100Gbps) transmission
- OSFP is probably the only available low-end multi-port transceiver
- 2 QSFP cages can be mounted by a belly-to-belly configuration (to maximize the front panel area usage)
- PC board has to be a bit thicker (\geq 2.2mm, like FTOP, while standard is 1.6mm)

RJ-45

- Several RJ-45 ports are needed
- Priority in maximizing the number of optical ports
- No RJ-45 connector designed for belly-to-belly (only double-story RJ-45 connectors like FTSW3)
- A solution found: 4-port RJ-45 and 2-port RJ-45 in belly-to-belly
- Maximizing the number of ports
 - 14 QSFP cages + 6 RJ-45 connectors
 - About the limit of the number of pins of Artix-7



FTSW4 development status M. Nakao

9 /12

FTSW4 crates for CDC

FTSW4 counting

- Minimum 19 FTSW4 modules to cover 300 CDC FEEs (7×3=21 FTSW4 modules is more logical configuration)
 1 more FTSW4 in the main TTD crate to deliver signals
 1 more FTSW3 to deliver JTAG signals to FTSW4
 1 VME CPU for JTAG
- Fully packed 2 VME 6U crates,

or more logical 3 VME 6U crate configuration

FTSW4 location

- FTSW4 can be located in E-hut (no length limitation of CAT7)
- FTSW4 on the detector will save the fiber cost, but less accessible
- One rack space for FTSW4 crates, and one rack space for patch panels
- MPO fiber (clock, b2tt, JTAG, b2link) directly from E-hut to FEE? (cabling would be a lot simpler)

Quantity and Cost

Number of boards

- 20-22 FTSW4 for CDC
- 1+1 FTSW4 for KLM+ARICH in E-hut to reduce 9 intermediate FTSW3 (no real gain for the current FEEs of other subdetectors)
- $\,$ Produce 30 boards if no other FEE upgrade which adopts optical b2tt/jtag
- Cost estimate
 - $\,$ FPGA \sim 500 USD per module
 - \sim Connectors \sim 300 USD / module
 - Oscillator \rightarrow need to purchase a reel for CDC (8000 USD total)
 - $\,$ Power chips \sim 100 USD / module
 - $\,$ Clock chips \sim 50 USD / module
 - Passive parts and extra parts for JTAG to be estimated
 - \sim QSFP modules \sim 1,000 USD / module
 - \triangleright Front panel \sim 50 USD / module
 - \sim PC board and assembly \sim 500 USD per board
 - Total: \sim 2,500 USD per board, 75,000 USD total (?)
 - (MPO fibers and CDC patch panel are not included)

Plan

FPGA pin counting needs a bit more work

- Priority since it may affects the part selection
- Need to allocate time to concentrate

Start buying parts

- Clock related parts may disappear from market stock
- Not much budget of this FYL left

JTAG needs more work

- JTAG-over-b2tt should be avoided for new CDC FEE
- JTAG-over-optjtag to be driven by FTSW4, but need more thinking

More work on details

- Ethernet option (both optical and RJ-45)
- Passive components, especially on noise mitigation

Schematics

Maybe towards the end of the FY or beginning of next FY