Bhabha veto in hie/stt/tau Junhao Yin, JoonNyon Chang, Taichiro Koga

From Koga-san

Trigge	Trigger menu and rate in 2020c						
Category	Trigger logic	rate (KHz)					
CDC B physics	CDC three 2Dtrack, two 2Dtrack Δφ>90deg	0.57					
ECL B physics	ECL #cluster>3,	0.11,					
	ECL Energy>1GeV	0.51					
KLM τ/dark	KLM back to back, #CDC-KLM matching >0	0.45					
CDC τ/dark	2D-short track φ>90deg two 2Dtrack Δφ>30deg	0.34, 0.52					
ECL τ/dark, bhabha	Several combinations of cluster and energy	2.03					
Bhabha veto	ECL 3D Bhabha veto	0.50 (no prescale)					
Others	Calibration etc.	0.41					
Total L1		3.5					

From Koga-san

L1 rate after Bhabha prescale in 2021 (e18r67)

-L1 rate is ~2.5kHz @ L=1.5 × 10^34. Roughly consistent with expectation

		raw rate(KHz)	effect to L1(kHz)
CDC B physics	CDC three full track (ffy) two full track $\Delta \phi$ >90deg (fyo)	0.13 0.19	0.13 0.11
ECL B physics	ECL #cluster>3 (c4)	0.11	0.05
	ECL Energy>1GeV (hie)	0.56	0.44 <- dominant
KLM τ/dark	KLM back to back (mu_b2b, mu_eb2b, ,beklm,eklm2) #CDC/ECL-KLM matching (cdcklm1,seklm1,ieklm1,ecleklm1)	0.44 0.13	0.40 0.07
CDC τ/dark	NN single track (stt) 2D-short track φ>90deg (yso,fioiecl1) two 2Dtrack Δφ>30deg (fy30) Two inner tracks (ioiecl2)	0.44 0.19 0.22 0.17	0.18 <- 2 nd dominant 0.06 0.01 0.08
ECL τ/dark, Bhabha	Several combinations of cluster and energy (Imlxx)	1.28	0.67 <- dominant
gamma gamma	ECL3Dbhabha without track (ggsel)	0.04	0.03
Bhabha	ECL loose Bhabha (bhapur)	0.07	0.05
Other		-	0.22
Total L1		2.5	2.5

Physics process	Cross section [nb]	Selection Criteria	Reference
$\Upsilon(4S)$	1.110 ± 0.008	-	[2]
$uar{u}(\gamma)$	1.61	-	KKMC
$dar{d}(\gamma)$	0.40	-	KKMC
$sar{s}(\gamma)$	0.38	-	KKMC
$car{c}(\gamma)$	1.30	-	KKMC
$e^+e^-(\gamma)$	$300 \pm 3 \;(\mathrm{MC \; stat.})$	$10^{\circ} < \theta_e^* < 170^{\circ},$	BABAYAGA.NLO
		$E_e^* > 0.15{\rm GeV}$	
$e^+e^-(\gamma)$	74.4	$p_e > 0.5 \mathrm{GeV}/c$ and e in	-
		ECL	
$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC\ stat.})$	$10^{\circ} < \theta_{\gamma}^* < 170^{\circ},$	BABAYAGA.NLO
		$E_{\gamma}^* > 0.15 \mathrm{GeV}$	
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma} > 0.5 { m GeV} { m in} { m ECL}$	-
$\mu^+\mu^-(\gamma)$	1.148	-	KKMC
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC	-
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,	-
		$\geq 1 \ \gamma \ (E_{\gamma} > 0.5 { m GeV})$ in I	ECL
$ au^+ au^-(\gamma)$	0.919	-	KKMC
$ uar{ u}(\gamma)$	$0.25 imes 10^{-3}$	-	KKMC
$e^+e^-e^+e^-$	$39.7 \pm 0.1 \text{ (MC stat.)}$	$W_{\ell\ell} > 0.5 {\rm GeV}/c^2$	AAFH
$e^+e^-\mu^+\mu^-$	$18.9 \pm 0.1 \text{ (MC stat.)}$	$W_{\ell\ell} > 0.5{ m GeV}/c^2$	AAFH

Cross section of bhabha will increase to 1.23×10^5 nb if $0.5^{\circ} < \theta_e^* < 179.5^{\circ}$

- Normalized with cross section.
- The default babayaga_NLO could not describe the small angle bhabha scattering...

• Generate bhabha with babayaga_NLO, scattering angle are [10, 170] (left) and [0.5, 179.5] (right)

18

16

of TRG cluster is 1

removing FW endcap cluster when # of cluster is only one

of TRG clusters is 2

Almost all second clusters are on endcap.

newhie = hie && 1-cluster-veto && 2-clusters-veto

FW endcap 1-cluster-veto: !(ncluster = 1 && tcid <= 80) but we have several different proposals for 2-cluster veto...

case l

2-cluster-veto: !(ncluster = 2 && $\Delta \theta_{cms} > 120$ && $\Delta \phi_{cms} > 1$

case II

2-cluster-veto: !(ncluster = 2 && $\Delta \theta_{\rm cms} > 120 \parallel \Delta \phi_{\rm cms} > 150$)

case III

BW endcap FW endcap 2-cluster-veto: !(ncluster = 2 && (tcid_{2nd} \geq 500 | |tcid_{2nd} \leq 80))

For a bhabha scattering event, the second energetic cluster is very likely to be the radiative photon

		1			
	bit logics	bhabha	taupair	eeee	data
	hie	1531	735879	2628	2950
150)	fff ffo c4 hie	1601	856847	3506	4476
	newhie	937	730233	2331	2100
	fff ffo c4 newhie	1007	851252	3210	3630

newhie	354	474811	1297	1051
fff ffo c4 newhie	562	802404	2507	2857

newhie	510	695997	1173	1640
fff ffo c4 newhie	558	823458	2165	3185

90	hie w/ additional Bhabha veto 1	hie1	•
91	hie w/ additional Bhabha veto 2	hie2	•
92	hie w/ additional Bhabha veto 3	hie3	•

New hie to reduce Bhabha contribution(condition-1) hie && 1CL veto && 2CL veto • 1CL veto = not (N(CL)=1 && θ_{CM} in FW) • 2CL veto = not (N(CL)=2 && 160°< $\Sigma \theta_{\rm CM}$ < 200° && 150°< $\Delta \phi_{\rm CM}$ < 250°) See (link) for details BIITRG-30 - Performance evaluation and optimization of new bhabha veto TO DO New hie to reduce Bhabha contribution(condition-2) hie && 1CL veto && 2CL veto • 1CL veto = not (N(CL)=1 && θ_{CM} in FW) • 2CL veto = not (N(CL)=2 && 160°< $\Sigma \theta_{\rm CM}$ < 200° || 150°< $\Delta \phi_{\rm CM}$ < 250°) See (link) for details BIITRG-30 - Performance evaluation and optimization of new bhabha veto TO DO New hie to reduce Bhabha contribution(condition-3) hie && 1CL veto && 2CL veto • 1CL veto = not (N(CL)=1 && θ_{CM} in FW) 2CL veto = not (N(CL)=2 && CL_{LowerE} in FW or BW) See (link) for details

BIITRG-30 - Performance evaluation and optimization of new bhabha veto TO DO

-hie -hie1 -hie2 -hie3

stt: CDC triggers Number of neuro 3D track with p>0.7 GeV/c > 0 !bhabha_3D !veto

		MC	Run 1800	Run 1780	Run 1780 HLT
Nevts	total	358421	881163	19939728	2800098
	stt	10365	323314	4698662	945197
	stt&&nclus==1	4399	25116	2134753	103477
	stt&&nclus==2	4033	143461	1694201	406439
	stt	214.69Hz	193.25Hz	1706.74Hz	343.33Hz
TRG rate	stt&&nclus==1	83.53Hz	15.01Hz	775.43Hz	37.59Hz
	stt&&nclus==2	83.45Hz	85.75Hz	615.4Hz	147.63Hz

From bhabha MC: ~40% of stt events have only 1 cluster, and ~40% have 2 clusters TRG rate of MC is estimated with the luminosity from run1780.

For one-cluster event

Clusters are mostly on barrel, coincident with the CDC region. Radiative photon and one electron is missing

$\Delta \theta_{cms}$: $\Delta \phi_{cms}$ -Nclus==2 &&outBits[96]==1

 $\Delta\Theta_{CMS}$ vs $\Delta\Phi_{CMS}$

Run 1780

Run 1800

 $\Delta \Theta_{CMS}$ vs $\Delta \Phi_{CMS}$

Run 1780 HLT

 $\Delta \Theta_{CMS}$ vs $\Delta \Phi_{CMS}$

MC

We tried same veto as we did in hie study

Name of cut	Definition	Index
stt	outBits[96]==1	a
1 cluster cut	!(ncluster = 1 && tcid <= 80°)	b
2 cluster cut (1)	!(ncluster = 2 && ($\Delta\theta$ cms > 120° && $\Delta\phi$ cms > 150°))	С
2 cluster cut (2)	!(ncluster = 2 && ($\Delta\theta$ cms > 120° $\Delta\phi$ cms > 150°))	d
2 cluster cut (3)	$!(\text{ncluster} = 2 \&\& (\text{tcid2nd} \ge 500^{\circ} \text{tcid2nd} \le 80^{\circ}))$	e
2 cluster cut (4)	$!(ncluster = 2 \&\& (\Delta\theta cms > 120^{\circ}))$	f
2 cluster cut (5)	!(ncluster = 2 && ($\Delta\phi$ cms > 150°))	g
2 cluster cut (6)	$!(\text{ncluster} = 2 \&\&((160^{\circ} < \Sigma'' \theta \text{cms}'' < 200^{\circ}) \&\& (150 < \Delta\phi \text{cms} < 250)))$	h
2 cluster cut (7)	$!(\text{ncluster} = 2 \&\&((160^{\circ} < \Sigma'' \theta \text{cms}'' < 200^{\circ}) \parallel (150^{\circ} < \Delta\phi \text{cms} < 250^{\circ}))$	i
2 cluster cut (8)	$!(ncluster = 2 \&\& (160^{\circ} < \Sigma'' \theta cms'' < 200^{\circ}))$	j
2 cluster cut (9)	$!(\text{ncluster} = 2 \&\& (150^{\circ} < \Delta\phi \text{cms} < 250^{\circ}))$	k

Requirement on $\Delta \phi$ is far Need further study...

GetEntries	TRG rate	GetEntries	TRG 1
a	386.43Hz	a+k	268.14
a+b	364.1Hz	a+b+c	363.95
a+c	386.28Hz	a+b+d	188.02
a+d	207.85Hz	a+b+e	256.1
a+e	278.5Hz	a+b+f	363.88
a+f	386.21Hz	a+b+g	244.9
a+9	267.28Hz	a+b+h	302.03
a+h	324.36Hz	a+b+i	183.69
a+i	203.53Hz	a+b+i	294.40
2+i	316 83Hz	a+b+k	22 1.1
tot	al	358	421
		200	

Requirement on $\Delta \phi$ is far more powerful than others

Bhabha veto in tau selection

Overall trigger efficiency is acceptable BUT: too many contamination from Bhabha

Preselections

Select signal/background with offline selection criteria:

```
variables.addAlias('isbha', 'L1FTDL(bha3d)')
```

If the number of vpho is not 0, tagged as signal, otherwise background.

Training --- FANN

Variables: Tracks: cdcf_0-35, cdcs_0-35, cdci_0-35 Clusters: necl, energy_0-5, theta_0-5, phi_0-5 (training breaks after adding cluster6,7, why? I don't know...)

Hyper parameters: fann options = basf2_mva.FANNOptions() fann options.m number of threads = 1 fann options.m max epochs = 100 fann options.m validation fraction = 0.001 fann options.m test rate = fann options.m max epochs + 1 # Never test fann options.m hidden layers architecture = "1*100" # one hidden layer with 100 nodes fann options.m random seeds = 1

Train with run1780, test with run1779

- # selected sig: number of signal events after preselection
- # selected bkg: number of signal events after preselection
- #identified sig: number of events with MVA requirement > {value}
- #identified bkg: number of events with MVA requirement < {value}</p>
- # wrong signal: number of background events with MVA requirement > {value}
- Purity = 1 wrong signal / identified signal
- Selection rate = identified signal wrong signal / selected signal
- Rejection rate = identified bkg / total events

N clusters	# selected sig	# selected bkg	#identified sig	# wrong signal	purity	Selection rate	Rejection rate
0	6	132869	0	0	-	-	100.0%
1	571	364008	5593	5214	6.78%	66.37%	98.47%
2	13691	502212	65951	55047	16.53%	79.64%	87.22%
3	4194	92835	18613	15329	17.64%	78.30%	80.82%
4	2823	26152	8351	6146	26.40%	87.11%	71.18%
5	2698	11606	10358	7829	24.42%	93.74%	27.59%
6	1520	5760	5599	1481	25.33%	93.29%	23.09%

Compare with different tau triggers:

N clusters	#identified sig	# of taub2b	# of taub2b2
0	0	140	9
1	5593	2002	538
2	65951	171709	62391
3	18613	38206	14578
4	8351	16483	8512
5	10358	10918	7456
6	5599	5500	3674

Summary

- We studied the bhabha events in hie/stt/tau triggers.
 - We plan to use new hie definition instead of old one.
 - Study on stt is ongoing. The new bhabha veto (used in hie) seems not effective in stt case
 - Will veto on $\Delta \phi$ affect other physics processes?
 - Bhabha veto based on neuro in tau triggers is ongoing.
- Improve signal/background separation

