
Accelerated Starter Kit
2022 Belle II Physics Week

01.12.2022
R. Manfredi, S. Raiz, F. Tenchini,

S. Bilokin, M. Merola

● This session is designed as an introduction to the basics of basf2 analysis.

● What we will cover:
○ What is basf2 and how to use it.
○ Signal particle reconstruction in the context of a Belle II analysis.
○ Grid submission and how to get your output back.
○ Workflow manager usage

● What we will not cover:
○ More advanced reconstruction tools e.g. Full Event Interpretation, Flavor Tagging, etc.

■ → Refer to the dedicated online book sections.
○ Offline analysis and how to make your advisor happy.

Introduction

2

https://software.belle2.org/development/sphinx/online_book/basf2.html

Foreword

3

● Due to time constraints, this starter kit is structured as lecture.

● Don’t be afraid to interrupt and ask questions.
○ There are no stupid questions.
○ Slides here are just seeds for conversation.

● You can follow along with the practical parts if you have a NAF or KEKCC
account.

● You can also go over the material by yourself later by going through
the online book, which covers everything we present here (and more).

https://software.belle2.org/development/sphinx/online_book/basf2.html

Help! I’m stuck!

● Documentation: https://software.belle2.org
○ basf2 is fairly well documented, you can also find the online book there.
○ Glossary: https://confluence.desy.de/display/BI/Main+Glossary

● Ask somebody: https://questions.belle2.org
○ Forum for any question, not just software. Or send an email to an expert you know.

● Examples: $BELLE2_RELEASE_DIR/<package>/examples
○ For your specific package.

● The code: $BELLE2_RELEASE_DIR
 https://stash.desy.de/projects/B2/repos/basf2/browse/

○ If you really have to...

4

https://software.belle2.org
https://confluence.desy.de/display/BI/Main+Glossary
https://questions.belle2.org
https://stash.desy.de/projects/B2/repos/basf2/browse/

The basf2 code
● Belle II Analysis Software Framework (basf2)

● C++17 “under the hood”
○ Subdivided in modules to manipulate data.
○ Build particles, calculate physics quantities, apply cuts.
○ Handles the heavy processing.

● Python 3.8 for steering
○ Load and configure C++ modules.
○ Overall more user friendly and readable.
○ If you are not a developer you will do most of your work

in Python.
5

Packages

● The software is organised into packages.
○ Tracking, simulation, various subdetectors...
○ During your time you might end up working on some of them.

● If you are doing a physics analysis, you mainly care about:
 analysis, mva, skim, b2bii

6

Steer most of the analysis steps and modules.
User interface for analysts.

Multivariate analysis e.g. machine learning.

Centrally run scripts to reduce data to usable size.

Convert Belle files to Belle II format.

Modules and Paths

7

● A basf2 module is a piece of code that performs a specific task.

● A basf2 path is an ordered list of modules that will be used to process the
data. Paths are built by chaining modules together.

Execution Flow

● Event data to be processed by modules is loaded into a common storage, the
DataStore. These are the physics events (either real data or MC).

● Non-event data is loaded from the central conditions database to DBStore.
● When processing starts, the path(s) you defined are looped over the events.

8

Setting up basf2

9

YOU SHOULD NOT HAVE TO INSTALL ANYTHING!

Setting up basf2

10

YOU SHOULD NOT HAVE TO INSTALL ANYTHING!

Unless you are doing software development, a full local installation of
basf2 is not necessary on KEK, NAF, or most other sites.

If you need to do limited code development, you can try an analysis setup.
(I will not cover it)

https://software.belle2.org/development/sphinx/build/tools_doc/index-01-tools.html#physics-analysis-setup

$ source /cvmfs/belle.cern.ch/tools/b2setup
Belle II software tools set up at: /cvmfs/belle.cern.ch/tools

Setting up basf2

11

Run this only once at
the start of the session.

$ source /cvmfs/belle.cern.ch/tools/b2setup
Belle II software tools set up at: /cvmfs/belle.cern.ch/tools

$ b2setup --help #check available releases
 ...
 The following releases are available:
 ...
 light-2210-devonrex
 prerelease-07-00-00b
 release-06-01-11
 prerelease-07-00-00c

Setting up basf2

12

Run this only once at
the start of the session.

Multiple releases are available.

$ source /cvmfs/belle.cern.ch/tools/b2setup
Belle II software tools set up at: /cvmfs/belle.cern.ch/tools

$ b2setup --help #check available releases
 ...
 The following releases are available:
 ...
 light-2210-devonrex
 prerelease-07-00-00b
 release-06-01-11
 prerelease-07-00-00c

$ b2help-releases --help
...
The recommended release is:
light-2210-devonrex

Setting up basf2

13

Run this only once at
the start of the session

You can check the recommendation.
If you are new or unsure, use this.

Multiple releases are available.

Releases and backwards compatibility

● Typically we recommend the latest full release (release-AA-BB-CC) or light
release (light-YYMM-CODENAME).

● A light release, such as light-2210-devonrex is made of a limited subset of
packages (analysis, mdst, skim, b2bii) and is suitable for analysis.

○ Designed for faster version iteration, decoupled from other packages
○ No reconstruction or simulation available

● Code is guaranteed to be backwards compatible across minor releases,
E.g. from release-AA-00-00 to release-AA-01-00, but not otherwise

14

Invoking basf2

15

$ source /cvmfs/belle.cern.ch/tools/b2setup

$ b2setup light-2210-devonrex
Environment setup for release: light-2210-devonrex
Central release directory :
/cvmfs/belle.cern.ch/el7/releases/light-2210-devonrex

$ basf2 --info

Invoking basf2

16

$ source /cvmfs/belle.cern.ch/tools/b2setup

$ b2setup light-2210-devonrex
Environment setup for release: light-2210-devonrex
Central release directory :
/cvmfs/belle.cern.ch/el7/releases/light-2210-devonrex

$ basf2 --info

Invoking basf2

17

Includes some useful
information

$ source /cvmfs/belle.cern.ch/tools/b2setup

$ b2setup light-2210-devonrex
Environment setup for release: light-2210-devonrex
Central release directory :
/cvmfs/belle.cern.ch/el7/releases/light-2210-devonrex

$ basf2 --info

basf2: Practical Example

https://software.belle2.org/development/sphinx/online_book/basf2.html
18

https://software.belle2.org/development/sphinx/online_book/basf2.html

Reconstruct a B decay

We will now reconstruct B⁺ → D̅⁰ π⁺, with D̅⁰ → K⁺π⁻.

19

You can find the scripts at:
KEKCC:/home/belle2/bilokin/public/valencia-tutorial
NAF: /afs/desy.de/user/b/bilokin/public/valencia-tutorial
https://stash.desy.de/projects/B2A/repos/starterkit-physics-week/browse

Script structure
#!/usr/bin/env python3

import basf2 as b2
import modularAnalysis as ma

Creates the main path
my_path = b2.create_path()

Import the input file
ma.inputMdst(environmentType='default',

filename='input.root', path=my_path)

MAIN CODE GOES HERE

Processes the path
b2.process(my_path)

20

Script structure
#!/usr/bin/env python3

import basf2 as b2
import modularAnalysis as ma

Creates the main path
my_path = b2.create_path()

Import the input file
ma.inputMdst(environmentType='default',

filename='input.root', path=my_path)

MAIN CODE GOES HERE

Processes the path
b2.process(my_path)

21

Module containing wrapper
functions for analysis modules.
Documentation: modularAnalysis

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=modularanalysis#module-modularAnalysis

Script structure
#!/usr/bin/env python3

import basf2 as b2
import modularAnalysis as ma

Creates the main path
my_path = b2.create_path()

Import the input file
ma.inputMdst(environmentType='default',

filename='input.root', path=my_path)

MAIN CODE GOES HERE

Processes the path
b2.process(my_path)

22

Initialize and process the path.
Your code goes in the middle.

Script structure
#!/usr/bin/env python3

import basf2 as b2
import modularAnalysis as ma

Creates the main path
my_path = b2.create_path()

Import the input file
ma.inputMdst(environmentType='default',

filename='input.root', path=my_path)

MAIN CODE GOES HERE

Processes the path
b2.process(my_path)

23

Standard way to input mDSTs.
Documentation: inputMdst

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=inputmdst#modularAnalysis.inputMdst

Script structure
#!/usr/bin/env python3

import basf2 as b2
import modularAnalysis as ma

Creates the main path
my_path = b2.create_path()

Import the input file
ma.inputMdst(environmentType='default',

filename='input.root', path=my_path)

MAIN CODE GOES HERE

Processes the path
b2.process(my_path)

24

File Types in Belle II analysis

DSTs are files containing post-reconstruction objects used to populate the DataStore. They are based on
the ROOT file format.

● DST: data summary table containing basf2 objects.
● cDST: calibration DST, which includes necessary information for calibration and alignment.
● mDST: mini DST with less information, optimised for file size.

○ Detector hits are dropped, contains only high-level objects, tracks and clusters.
○ mDST backward-compatibility is guaranteed for the last two major releases.

● uDST: user or micro (μ) DST, so-called skimmed format which contains only certain events and
more analysis objects per event. ← Recommended for your analysis

Ntuples are the files that are produced via basf2 execution on _DST files. Typically, this is a flat table data,
where columns are the variables, like momentum, energy, etc., and rows are particles or events.

● ROOT: the most popular format to go (yet). Contains TTree or TH1D, TH2D objects
● H5: not used as much (yet)

25

Define lists of stable particles

track_quality_cut = 'abs(dr) < 0.5 and abs(dz) < 3'
Fill pion lists
ma.fillParticleList(decayString='pi+:myPions',

cut=track_quality_cut, path=my_path)

Equivalent of doing
pload = register_module('ParticleLoader')
pload.param('decayStringsWithCuts',
[('pi+:myPions', track_quality_cut)])
mypath.add_module(pload)

sc.stdK('all', path=my_path)
ma.cutAndCopyList('K-:myKaons', 'K-:all',

track_quality_cuts, path=my_path)

26

track_quality_cut = 'abs(dr) < 0.5 and abs(dz) < 3'
Fill pion lists
ma.fillParticleList(decayString='pi+:myPions',

cut=track_quality_cut, path=my_path)

Equivalent of doing
pload = register_module('ParticleLoader')
pload.param('decayStringsWithCuts',
[('pi+:myPions', track_quality_cut)])
mypath.add_module(pload)

sc.stdK('all', path=my_path)
ma.cutAndCopyList('K-:myKaons', 'K-:all',

track_quality_cuts, path=my_path)

Define lists of Final State Particles

27

Creates lists of basic objects
to reconstruct decays.
Documentation: fillParticleList
Documentation: Standard lists

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=fillparticlelist#modularAnalysis.fillParticleList
https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/StandardParticles.html

track_quality_cut = 'abs(dr) < 0.5 and abs(dz) < 3'
Fill pion lists
ma.fillParticleList(decayString='pi+:myPions',

cut=track_quality_cut, path=my_path)

Equivalent of doing
pload = register_module('ParticleLoader')
pload.param('decayStringsWithCuts',
[('pi+:myPions', track_quality_cut)])
mypath.add_module(pload)

sc.stdK('all', path=my_path)
ma.cutAndCopyList('K-:myKaons', 'K-:all',

track_quality_cuts, path=my_path)

28

These are convenience
functions which are equivalent
to several lines of code.

More legible and user friendly.

Define lists of Final State Particles

track_quality_cut = 'abs(dr) < 0.5 and abs(dz) < 3'
Fill pion lists
ma.fillParticleList(decayString='pi+:myPions',

cut=track_quality_cut, path=my_path)

Equivalent of doing
pload = register_module('ParticleLoader')
pload.param('decayStringsWithCuts',
[('pi+:myPions', track_quality_cut)])
mypath.add_module(pload)

sc.stdK('all', path=my_path)
ma.cutAndCopyList('K-:myKaons', 'K-:all',

track_quality_cuts, path=my_path)

29

Need to specify:
 particle name
 list label
 selection criteria

Creates lists of basic objects
to reconstruct decays.
Documentation: fillParticleList
Documentation: Standard lists

Which selection criteria to
use? Consult the physics
performance group, or your
own physics working group.

Define lists of Final State Particles

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=fillparticlelist#modularAnalysis.fillParticleList
https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/StandardParticles.html

track_quality_cut = 'abs(dr) < 0.5 and abs(dz) < 3'
Fill pion lists
ma.fillParticleList(decayString='pi+:myPions',

cut=track_quality_cut, path=my_path)

Equivalent of doing
pload = register_module('ParticleLoader')
pload.param('decayStringsWithCuts',
[('pi+:myPions', track_quality_cut)])
mypath.add_module(pload)

sc.stdK('all', path=my_path)
ma.cutAndCopyList('K-:myKaons', 'K-:all',

track_quality_cuts, path=my_path)

30

Need to specify:
 particle name
 list label
 selection criteria

No need to create charge
conjugate, basf2 does it
automatically.

Creates lists of basic objects
to reconstruct decays.
Documentation: fillParticleList
Documentation: Standard lists

Define lists of Final State Particles

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=fillparticlelist#modularAnalysis.fillParticleList
https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/StandardParticles.html

Building charged particleLists

● Charged final state particles (FSP) are built from reconstructed Track objects
which have (among other things) a well defined momentum p.

● The mass m (and therefore energy E) is assigned based on your hypothesis.
● The label distinguishes lists of the same particles type, for your own benefit.

○ Maybe choose a useful name.

31

ma.fillParticleList(decayString='pi-:tomato' ,cut=’’,path)
ma.fillParticleList(decayString='K+:potato' ,cut=’’,path)
ma.fillParticleList(decayString='K-:breakfast',cut=’abs(dz) < 3’,path)

Building charged particleLists

● Charged final state particles (FSP) are built from reconstructed Track objects
which have (among other things) a well defined momentum p.

● The mass m (and therefore energy E) is assigned based on your hypothesis.
● The label distinguishes lists of the same particles type, for your own benefit.

○ Maybe choose a useful name.

● Lists 1 & 2 are built from the exact same tracks, but assuming different mass.
○ One need to use particle identification (PID) selection to select kaon or pion like particles

32

ma.fillParticleList(decayString='pi-:tomato' ,cut=’’,path)
ma.fillParticleList(decayString='K+:potato' ,cut=’’,path)
ma.fillParticleList(decayString='K-:breakfast',cut=’abs(dz) < 3’,path)

Building charged particleLists

● Charged final state particles (FSP) are built from reconstructed Track objects
which have (among other things) a well defined momentum p.

● The mass m (and therefore energy E) is assigned based on your hypothesis.
● The label distinguishes lists of the same particles type, for your own benefit.

○ Maybe choose a useful name.

● Lists 1 & 2 are built from the exact same tracks, but assuming different mass.
○ One need to use particle identification (PID) selection to select kaon or pion like particles

● The third list is a subset of the second.

33

ma.fillParticleList(decayString='pi-:tomato' ,cut=’’,path)
ma.fillParticleList(decayString='K+:potato' ,cut=’’,path)
ma.fillParticleList(decayString='K-:breakfast',cut=’abs(dz) < 3’,path)

Building charged particleLists

● Charged final state particles (FSP) are built from reconstructed Track objects
which have (among other things) a well defined momentum p.

● The mass m (and therefore energy E) is assigned based on your hypothesis.
● The label distinguishes lists of the same particles type, for your own benefit.

○ Maybe choose a useful name.

● Lists 1 & 2 are built from the exact same tracks, but assuming different mass.
○ One need to use particle identification (PID) selection to select kaon or pion like particles

● The third list is a subset of the second.
● Both positive and negative tracks are included, no matter the sign used.

34

ma.fillParticleList(decayString='pi-:tomato' ,cut=’’,path)
ma.fillParticleList(decayString='K+:potato' ,cut=’’,path)
ma.fillParticleList(decayString='K-:breakfast',cut=’abs(dz) < 3’,path)

Neutral lists

● Neutrals are also built with fillParticleList() or via stdPhotons,
stdKlongs, stdPi0s modules

● Photons are generally built from ECLClusters.
● KL are generally built from KLMClusters.
● Some composites, like KS and Λ, are generally built from an object called V0, etc.

● I will not delve into the details; you can find many examples in the docs.

● NEVER do your own event loop over ECLClusters, etc.
○ Just use fillParticleList()

35

Pythonization of the script

● If we want to reuse the steering script it is better to reorganize it:

● This is useful for the script reusability
36

def get_Bmeson_path():
 # Create a path
 my_path = b2.create_path()
 # MAIN CODE HERE
 return my_path

Condition to run only when the script is called directly:
if __name__ == "__main__":
 # Call our function:
 my_path = get_Bmeson_path()
 # Processes the path
 b2.process(my_path)

Reconstruct D0 and then B+ candidates

Form D0 candidates
ma.reconstructDecay(decayString='D0:Kpi -> K+:myKaons pi-:myPions',

cut='1.7 < M < 2.1', path=my_path)

Form B+ candidates
ma.reconstructDecay(decayString='B+:D0pi -> D0:Kpi pi+:myPions',

cut='5.2 < Mbc < 5.3 and abs(deltaE) < 0.3', path=my_path)

37

Form D0 candidates
ma.reconstructDecay(decayString='D0:Kpi -> K+:myKaons pi-:myPions',

cut='1.7 < M < 2.1', path=my_path)

Form B+ candidates
ma.reconstructDecay(decayString='B+:D0pi -> D0:Kpi pi+:myPions',

cut='5.2 < Mbc < 5.3 and abs(deltaE) < 0.3', path=my_path)

Reconstruct D0 and then B+ candidates

38

Forms and selects composite
particle candidates.
Documentation: reconstructDecay

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=reconstructdecay#modularAnalysis.reconstructDecay

Reconstruct D0 and then B+ candidates

Form D0 candidates
ma.reconstructDecay(decayString='D0:Kpi -> K-:myKaons pi+:myPions',

cut='1.7 < M < 2.1', path=my_path)

Form B+ candidates
ma.reconstructDecay(decayString='B+:D0pi -> anti-D0:Kpi pi+:myPions',

cut='5.2 < Mbc < 5.3 and abs(deltaE) < 0.3', path=my_path)

39

Needs decayString as input.
Documentation: decayString

Forms and selects composite
particle candidates.
Documentation: reconstructDecay

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/DecayString.html?highlight=decay%20string#decaystring
https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=reconstructdecay#modularAnalysis.reconstructDecay

ReconstructDecay internals

Form D0 candidates
ma.reconstructDecay(decayString='D0:Kpi -> K-:all pi+:all',cut='', path=my_path)

40

K-1 π-1

K+2 π+2

K-3 π-3

K+4 π+4

Imagine that there are no
selection criteria applied

ReconstructDecay internals

Form D0 candidates
ma.reconstructDecay(decayString='D0:Kpi -> K-:all pi+:all',cut='', path=my_path)

41

K-1 π-1

K+2 π+2

K-3 π-3

K+4 π+4

D01

D02

D03

D04

D05

D06

D07

D08

Imagine that there are no
selection criteria applied

This is an origin of the
multiple candidates per
event

The reconstructDecay
function will produce all
possible combinations of
daughter particles

Candidate-based analysis

42

● Take particle lists.
● Build up decay parents from daughters.
● Make candidates for your decay of interest.
● Filter/cut/keep/process.

● You might have more than one candidate per event.
● We deal with this after the fact. This is fine.

○ See for example https://arxiv.org/abs/1703.01128

https://arxiv.org/abs/1703.01128

We will now perform a vertex fit

43

● What does it mean?
○ Perform a minimisation to combine particle measurements, under the assumption that they

originate from a common point (or a set of points).
○ Inputs: track helix, energy deposits, measurement covariances
○ Outputs: vertex position, improved 4-momentum of composites, covariance matrix

● Why?
○ Combinatorial background rejection.
○ Decay vertex position measurement → lifetime measurement.
○ Improved knowledge of kinematics.

● More tutorials here.

https://software.belle2.org/development/sphinx/online_book/basf2/vertex_fitting.html

Vertex fit

import vertex as vx

Vertex fit of the whole decay chain
vx.treeFit(list_name='B+:D0pi', conf_level=-1, path=my_path)

44

Vertex fit

import vertex as vx

Vertex fit of the whole decay chain
vx.treeFit(list_name='B+:D0pi', conf_level=-1, path=my_path)

45

Fits the full decay chain according to our B⁺ hypothesis.
Documentation: TreeFitter

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/TreeFitter.html

Vertex fit

import vertex as vx

Vertex fit of the whole decay chain
vx.treeFit(list_name='B+:D0pi', conf_level=-1, path=my_path)

46

Fits the full decay chain according to our B⁺ hypothesis.
Documentation: TreeFitter

TreeFitter is also fine for fitting single vertices.
However, for specific cases, other fitters are available.

Vertex fit algorithms may change the kinematics of the
daughter particles which might affect the high-level
variables such as Mbc and ΔE

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/TreeFitter.html
https://b2-master.belle2.org/software/development/sphinx/analysis/doc/OtherVertexFitters.html

Match MC information

Match reconstructed particles with MC particles
ma.matchMCTruth(list_name='B+:D0pi', path=my_path)

47

How do I know if my reconstruction is correct?
If we are working on simulation, I can compare my candidate with the MC event truth.
MCMatching tells me if a decay is correctly reconstructed, or why it is not.
Documentation: MCMatching

This line allows us to use isSignal, mcPDG and other MC-based variables

The flavor of daughter particles matters:
decayString='B+:D0pi -> anti-D0:Kpi pi+:myPions' and
decayString='B+:D0pi -> D0:Kpi pi+:myPions' will give different results!

https://software.belle2.org/development/sphinx/analysis/doc/MCMatching.html

Saving outputs: Variables

48

● Variables are either:
○ Physical quantities: invariant mass, beam-constrained mass, E, p, pT ,…
○ Counters: event number, experiment number ...

● Every variable takes at least a Particle* as input and return a single
number, such as double or integer, or a boolean.

● There are many variables available for analysis use.
You can run b2help-variables to output a list, or check here.

https://software.belle2.org/development/sphinx/analysis/doc/index-01-analysis.html#variables

● Variables can be saved to ROOT trees:

● … or directly to histogram:

● Note: It is a bad idea to use different folder in the output path, given that every
analysis script will be run on the Grid at some point

Saving outputs: Writing to file

ma.variablesToNtuple('B+:D0pi', ['Mbc'],
filename='outputTree.root',treename='tree', path=my_path)

ma.variablesToHistogram('B+:D0pi', ('Mbc', 60, 5.2, 5.3)],
filename='outputHisto.root', path=my_path)

49

*

● For practical reasons, variables are grouped in collections.

● The above is equivalent to:

Variable Collections

50

ma.variablesToNtuple('B+:D0pi', ['Mbc',’deltaE’],
filename='outputTree.root',treename='tree', path=my_path)

import variables.collections as vc

ma.variablesToNtuple('B+:D0pi', vc.deltae_mbc,
filename='outputTree.root',treename='tree', path=my_path)

● In addition to the head of the decay (in this case, the B+) you will probably
want to save some quantities for the daughter particles.

● We do this with the daughter(i,var) meta-function.
● This can lead to unwieldy variable names, so it’s useful to define aliases:

● This is also useful for other meta-functions and long variable names to
improve readability.

Aliases

51

#Energy of the K+ in B+ -> [D0 -> K+ pi-] pi+
vm.addAlias("K_E", "daughter(0, daughter(0, E))")

● If you have many variables, this can quickly become cumbersome.
● Thankfully we can automate alias creation.

Aliases

52

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables = vc.kinematics,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

● If you have many variables, this can quickly become cumbersome.
● Thankfully we can automate alias creation.

Aliases

53

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables = vc.kinematics,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

Contains functions to manage
variable names and define aliases.
Documentation: variables.utils

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/Variables.html?highlight=create_aliases_for_selected#operations-with-variable-lists

● If you have many variables, this can quickly become cumbersome.
● Thankfully we can automate alias creation.

Aliases

54

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables = vc.kinematics,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

Adds prefixes to all input variables,
according to the particles selected in the
decay string, avoiding ambiguities.

Optional

● If you have many variables, this can quickly become cumbersome.
● Thankfully we can automate alias creation.

Aliases

55

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables = vc.kinematics,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

Adds prefixes to all input variables,
according to the particles selected in the
decay string, avoiding ambiguities.

['px','py','pz','pt','p','E']

● If you have many variables, this can quickly become cumbersome.
● Thankfully we can automate alias creation.

Aliases

56

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables = vc.kinematics,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

Adds prefixes to all input variables,
according to the particles selected in the
decay string, avoiding ambiguities.

['D_K_px','D_K_py',...,'D_K_E','D_pi_px',...]

['px','py','pz','pt','p','E']

● We can put it all together:

● I trimmed this down for the sake of the lecture.
● Check out the example script for a slightly more extensive example:

○ /afs/desy.de/user/b/bilokin/public/valencia-tutorial/steering_0X_final.py

Saving outputs: Writing to file

57

ma.variablesToNtuple('B+:D0pi',
['charge', 'nTracks'] + vc.deltae_mbc + track_vars,
filename='outputTree.root',
treename='tree',
path=my_path)

Run the script!

● First set up basf2:

$ source /cvmfs/belle.cern.ch/tools/b2setup
$ b2setup light-2210-devonrex

● Then run it on a test mdst file which you can find in the same folder:

basf2 /afs/desy.de/user/b/bilokin/public/valencia-tutorial/steering_0X_final.py
 -i
/afs/desy.de/user/b/bilokin/public/valencia-tutorial/mdst/charged_testmdst_r6.root
 -o output.root

● Feel free to take it, play around with it, and modify it to suit your analysis!
58

GBASF2

https://software.belle2.org/development/sphinx/online_book/computing/gbasf2.html
59

https://software.belle2.org/development/sphinx/online_book/computing/gbasf2.html

The Grid

● The Grid is a distributed computing system utilised by Belle II (and other
particle physics experiments), to make use of the computing resources of the
many institutions worldwide.

● Modern particle physics
experiments collect and analyze
tens of petabytes of data and MC.

● Processing all of it at a single
site is not feasible.

60

Gbasf2

● Gbasf2 is the command-line client for submitting grid-based basf2 jobs.
● The same steering files are used for both basf2 and gbasf2.
● The steps to gain access are described here:

https://confluence.desy.de/display/BI/Computing+GettingStarted
○ Be aware they might take some time to complete.

● If everything is fine, travel to the Dirac webpage (https://dirac.cc.kek.jp:8443/)
and you should see your username at the bottom right:

61

https://confluence.desy.de/display/BI/Computing+GettingStarted
https://dirac.cc.kek.jp:8443/

Setting up gbasf2

62

● You used to need a local installation. It can still be done; follow the steps
here: https://confluence.desy.de/display/BI/Computing+GBasf2

● However, nowadays you can also use a pre-installed version. Simply run:

$ source /cvmfs/belle.kek.jp/grid/gbasf2/pro/tools/setup.sh
$ gb2_proxy_init -g belle

● Attention: at this moment the basf2 and gbasf2 environments are
not compatible. This means gbasf2 will require a fresh ssh session.

https://confluence.desy.de/display/BI/Computing+GBasf2

Check gbasf2 release

● Run gb2_check_release to see what version gbasf2 you are running:

$ gb2_check_release
Your installation is up-to-date: v5r6
Available gbasf2 releases:
Production: v5r6
Newer than prod:
Older than prod: v5r4,v5r4p1,v5r4p2,v5r5,v5r5p2
Available basf2 releases:
release-06-01-10
release-06-01-09
release-06-00-03

... 63

This will also tell you which basf2
releases are enabled for grid use.

Locating files on the grid

● Files (both MC and data) are stored around the world. A file catalog keeps the
record of where the files are located.

● To access them, we use a logical file name (LFN) or logical path name (LPN)
which is a unique identifier taking the form of a unix-like path:

/belle/data_type/some_more_directories/dataset/datablock/file

● By design, each datablock contains a maximum of 1000 files.
○ If a dataset contains more than 1000 files, it will be subdivided into several blocks.

● You can list the content of a directory on the grid using gb2_ds_list
○ This is similar to using ls on your local system

64

The Dataset Searcher
This application is how we find datasets on the grid.

● Console version: gb2_ds_search dataset ...
65

List of
LPNs

Try it yourself!
● Go to the DIRAC webportal and open (at the bottom left)

→ Menu
 → BelleDIRACApps
 → Dataset Searcher.

● … and play around with the fields.

● For example if I want to find the mdst files produced for MC type “charged”
during the MC14ri_d campaign, with beam background (BGx1), I would do...

66

https://dirac.cc.kek.jp:8443/DIRAC/

Try it yourself!

67

Submitting your first jobs

68

● The basic usage is

$ gbasf2 <your_steering_file.py> -p <project_name>
-s <available_basf2_release> -i <LPN of the input file>

Submitting your first jobs

69

● The basic usage is

$ gbasf2 <your_steering_file.py> -p <project_name>
-s <available_basf2_release> -i <LPN of the input file>

● You should test your steering file locally before submitting it!

● In our case, if we wanted to run our steering file on the LPN we just found:

$ gbasf2 /home/belle2/manfredi/starterKit/BtoD0pi_example.py \
 -p gb2StarterKitTutorial -s light-2110-tartarus \
 -i /belle/MC/release-05-02-00/.../charged/mdst/sub00

This needs to be unique and cannot be
reused. Figure out a good naming
scheme for your jobs.

Submitting your first jobs

70

● In our case, if we wanted to run our steering file on the LPN we just found:

gbasf2 /afs/desy.de/user/b/bilokin/public/valencia-tutorial/steering_0X_final.py \
 -p gb2StarterKitTutorial -s light-2210-devonrex \
 -i /belle/MC/release-06-00-08/.../charged/mdst/sub00

Submitting your first jobs

71

● You can also provide a Belle II collection

gbasf2 -p gb2StarterKitTutorial -s light-2210-devonrex \
/afs/desy.de/user/b/bilokin/public/valencia-tutorial/steering_0X_final.py -i
/belle/collection/Data/proc13_had_4S_v3

This will run on the proc13 hadronic skim.

● For now, to run on the full Moriond2023 dataset you need to run
on two separate collections: “proc13 Moriond2023” and “prompt
Moriond2023”.

Belle II Collections

72

● You can check the list of all available collections using

$ gb2_ds_search collection --list_all_collections /belle/collection/XXX/*

or at https://confluence.desy.de/pages/
viewpage.action?spaceKey=BI&title=
Collection+summary

Recommended

https://confluence.desy.de/pages/viewpage.action?spaceKey=BI&title=Collection+summary
https://confluence.desy.de/pages/viewpage.action?spaceKey=BI&title=Collection+summary
https://confluence.desy.de/pages/viewpage.action?spaceKey=BI&title=Collection+summary

Monitoring jobs
● There are two ways to monitor your jobs on the grid.
● By command line:

gb2_project_summary -p gb2StarterKitTutorial
 Project Owner Status Done Fail Run Wait Submission Time(UTC) Duration
==
gb2StarterKitTutorial sraiz Running 285 0 1 0 2021-11-25 21:55:40 00:25:08

● Or on the web portal:
→ Menu
 → Applications
 → Job Monitor

73

Downloading the output
● If your jobs finished successfully (status ‘Done’), you can download the output.

● This is located below your user space:
/belle/user/<username>/<project_name>

● You can check the output using gb2_ds_list <project_name> :

$ gb2_ds_list gb2StarterKitTutorial/sub00
/belle/user/sraiz/gb2StarterKitTutorial/sub00/ntuple_00000_job216088604_00.root
/belle/user/sraiz/gb2StarterKitTutorial/sub00/ntuple_00001_job216088605_00.root
...

● … and download them with gb2_ds_get <project_name>

74

Other useful commands
All the gbasf2 commands start with gb2_: you can use tab completion to see a list.

75

Troubleshooting
● Things do not always go well. One or several of your jobs might fail.

○ If it’s only a few jobs, you can reschedule them and attempt again.
○ If it’s all of them, it’s probably an issue you need to debug.

● The online book provides info on what to do in these situations.

● You can also find more information in the documentation:
○ https://confluence.desy.de/display/BI/Computing+GBasf2
○ https://gbasf2.belle2.org/

● If that doesn’t work, you can send an email to the user forum:
○ Subscribe at https://lists.belle2.org/sympa/info/comp-users-forum
○ (If you are using gbasf2 you should be subscribed anyway.)

76

https://software.belle2.org/development/sphinx/online_book/computing/gbasf2.html#dealing-with-issues
https://confluence.desy.de/display/BI/Computing+GBasf2
https://gbasf2.belle2.org/
https://lists.belle2.org/sympa/info/comp-users-forum

Fast introduction to workflow managers

77

Introduction to workflow managers
● Our physics analyses typically have several stages:

○ Running gbasf2 processing to produce ntuples
○ Merging the resulting ntuples

■ Train / test / validation split
○ Reweighting
○ Training of ML algorithms
○ Fitting
○ Performing systematic studies

● These stages has to be repeated for primary and control
channel, data and MC, etc., which makes it even more
complicated

● A collection of bash scripts is not easily configurable and
cannot be parallelized, outputs no reports,
no error handling, etc.

● Implementation of these features in bash scripts is just
reinventing workflow management systems

78

Available solutions
● snakemake: https://snakemake.readthedocs.io/

○ Binds separate analysis scripts using a compact python
configuration file

○ Make/Cmake based, relies on filesystem
○ Supports cluster systems like HTCondor (NAF)*, LSF (KEKCC)

■ Experimental gbasf2 support
○ Very steep learning curve, requires knowledge of regex

● b2luigi: https://b2luigi.readthedocs.io/
○ Design any pipeline in python using Task and Target classes
○ Build your own framework
○ Supports HTCondor, LSF and gbasf2
○ Quite easy to master, but code intensive

● Other popular frameworks:
○ Apache Airflow
○ Nextflow

79

https://github.com/casschmitt/snakemake-wrappers/tree/gbasf2-snakemake-wrapper/bio/gbasf2

B2luigi
● Building of b2luigi pipeline requires writing a

chain of python classes
○ Basic logic element is Task class:

■ requires(): yields a list of required tasks
■ outputs(): yields a list of Targets
■ run(): main logic method

○ LocalTarget object contains output file path
● The tasks are chained output to requires
● Similarly to basf2 one has to run a “process”

command:
○ b2luigi.process([task],local_scheduler=True)

● b2luigi checks the availability of the Targets
and it decides which chain to run

● Tasks are required to raise Exceptions
properly in order to catch the errors

80

B2luigi gbasf2 example

● No need to setup gbasf2
environment in different terminal!

● To use gbasf2 functionality one
has to use a Basf2PathTask with
batch_system='gbasf2'
parameter

● The task will submit the project,
monitor, reschedule jobs and
download the output

● Additional settings can be
provided in settings.json file:

○ gbasf2_install_directory
○ gbasf2_release
○ gbasf2_max_retries
○ gbasf2_release

81

Workflow managers summary

● Workflow managers will simplify your interaction with gbasf2
○ The example will submit, monitor, reschedule jobs and download the output
○ Merge output into one file

● The analysis workflow can scale beyond the Grid
○ It is possible to create a chain that will produce the result, value±uncertainties,

using the data on the grid as an input
○ Important for the analysis repetition and preservation

82

Closing words and Acknowledgements

83

Closing words and Acknowledgements

● Almost everything in these slides has been taken from previous lectures and
StarterKits on the subject, as well as from the online book.

● Huge effort by the Training and Documentation group to provide easily
accessible material.

● However, nothing is perfect. You might find mistakes or missing information.

● Help us fix it. You can make the difference!
https://software.belle2.org/development/sphinx/online_book/join_us.html

84

https://software.belle2.org/development/sphinx/online_book/join_us.html

85

QUESTIONS?

Reconstruct a simple B decay

We will now reconstruct B- → D0 π-, with D0 → K- π+ .

We’ll start selecting final state particles and then combining
them to form D and then B candidates, perform a kinematic
fit, associate to MC information, and save everything in a
ROOT output file.

The next slides show step by step the composition of a script
that performs all these operations using basf2.

The script is available on KEKCC at
/home/belle2/manfredi/starterKit/BtoD0pi_example.py

86

Save output -- define variables to save

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables=vc.kinematics + vc.mc_truth,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

meson_vars = vu.create_aliases_for_selected(
list_of_variables=vc.kinematics + vc.mc_truth +
vc.inv_mass + vc.vertex,
decay_string='^B+ -> [^D0 -> K+ pi-] pi+',
prefix=['B', 'D'])

87

Save output -- define variables to save

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables=vc.kinematics + vc.mc_truth,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

meson_vars = vu.create_aliases_for_selected(
list_of_variables=vc.kinematics + vc.mc_truth +
vc.inv_mass + vc.vertex,
decay_string='^B+ -> [^D0 -> K+ pi-] pi+',
prefix=['B', 'D'])

88

Contains predefined collections of variables.
Documentation: variables.collections

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/Variables.html?highlight=variables%20collections#predefined-collections

Save output -- define variables to save

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables=vc.kinematics + vc.mc_truth,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

meson_vars = vu.create_aliases_for_selected(
list_of_variables=vc.kinematics + vc.mc_truth +
vc.inv_mass + vc.vertex,
decay_string='^B+ -> [^D0 -> K+ pi-] pi+',
prefix=['B', 'D'])

89

Contains functions to manage
variable names and define aliases.
Documentation: variables.utils

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/Variables.html?highlight=create_aliases_for_selected#operations-with-variable-lists

Save output -- define variables to save

Create aliases for variables

import variables.collections as vc
import variables.utils as vu

track_vars = vu.create_aliases_for_selected(
list_of_variables=vc.kinematics + vc.mc_truth,
decay_string='B+ -> [D0 -> ^K+ ^pi-] ^pi+',
prefix=['D_K', 'D_pi', 'B_pi'])

meson_vars = vu.create_aliases_for_selected(
list_of_variables=vc.kinematics + vc.mc_truth +
vc.inv_mass + vc.vertex,
decay_string='^B+ -> [^D0 -> K+ pi-] pi+',
prefix=['B', 'D'])

90

Adds prefixes for all input variables, for
all the particles selected in a decay
string, avoiding ambiguities.
documentation:createAliasesForSelected

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/Variables.html?highlight=create_aliases_for_selected#variables.utils.create_aliases_for_selected

Save output -- write in tree/histogram

Saves variables for each candidate in a ROOT tree
ma.variablesToNtuple('B+:D0pi', ['charge', 'isContinuumEvent', 'nTracks'] +

vc.deltae_mbc + meson_vars + track_vars,filename='outputTree.root',
treename='myTree', path=my_path)

Saves variables for each candidate in a ROOT histogram
ma.variablesToHistogram('B+:D0pi', [('deltaE', 40, -0.3, 0.3),

('Mbc', 60, 5.2, 5.3)], path=my_path)

91

Save output -- write in tree/histogram

Saves variables for each candidate in a ROOT tree
ma.variablesToNtuple('B+:D0pi', ['charge', 'isContinuumEvent', 'nTracks'] +

vc.deltae_mbc + meson_vars + track_vars,filename='outputTree.root',
treename='myTree', path=my_path)

Saves variables for each candidate in a ROOT histogram
ma.variablesToHistogram('B+:D0pi', [('deltaE', 40, -0.3, 0.3),

('Mbc', 60, 5.2, 5.3)], path=my_path)

92

Save selected variables of a particle list into ROOT trees or histograms.
documentation:variablesToNtuple
documentation:variablesToHistogram

https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=variablestontuple#modularAnalysis.variablesToNtuple
https://software.belle2.org/sphinx/release-06-00-03/analysis/doc/MAWrappers.html?highlight=variablestontuple#modularAnalysis.variablesToHistogram

Outline

- Setup of gbasf2
- Introduction on the grid
- Develop a basf2 steering file. (DONE)
- Test it locally. (DONE)
- Locate your input files.
- Submit jobs to the grid with the same steering file.
- Download the output to perform the offline analysis (plots, fits, etc.)

93

Converting p12 to PEM

- Copy your certificate, e.g. myCert.p12, to the computer (e.g. KEKCC) where you will run
gb2_proxy_init.

- If this is the first time, you may not have the directory .globus, then make it:
mkdir -p $HOME/.globus

- Extract the certificate. You need to execute the two commands to extract both usercert.pem and
userkey.pem:
openssl pkcs12 -in myCert.p12 -clcerts -nokeys -out
$HOME/.globus/usercert.pem
openssl pkcs12 -in myCert.p12 -nocerts -out $HOME/.globus/userkey.pem

- You must set the mode of your userkey.pem file to read/write only by the owner, otherwise
voms-proxy-init will not use it:
chmod go-rw $HOME/.globus/userkey.pem

- Delete the myCert.p12 file from KEKCC to avoid security issues

94

Installing gbasf2 (see also https://confluence.desy.de/display/BI/Computing+GBasf2)

- This exercise assumes you will run gbasf2 on KEKCC.
- Make sure you do not have basf2 setup (you cannot run basf2 and gbasf2 from the same terminal

session).

$ mkdir gbasf2 && cd gbasf2
$ wget -N http://belle2.kek.jp/~dirac/dirac-install.py
$ python dirac-install.py -V Belle-KEK
$ source bashrc # or cshrc if you use csh.
$ dirac-proxy-init -x # enter certificate password
$ dirac-configure defaults-Belle-KEK.cfg

- Once the above installation is done, you only need to execute two commands every time that you
open a new terminal:

$ source ~/gbasf2/BelleDIRAC/gbasf2/tools/setup
$ gb2_proxy_init -g belle # enter certificate password

95

https://confluence.desy.de/display/BI/Computing+GBasf2

Troubleshooting
Sometimes, things do not go well. A few jobs can fail because a large list of reasons, like

● A timeout in the transfer of a file between sites.
● A central service not available for a short period of time.
● An issue in the site hosting the job.
● etc.

To reschedule failed jobs, you can use gb2_job_reschedule -p <project name>:
gb2_job_reschedule --usage
Resubmit failed jobs or projects.
Only jobs which have fatal status (Failed, Killed, Stalled) are affected.
Exact same sandbox and parameters are reused. Thus you may need to submit different job if they are wrong.
By default, select only your jobs in current group.
Please switch group and user name by options.
All user's jobs are specified by '-u all'.
Examples:
% gb2_job_reschedule -j 723428,723429
% gb2_job_reschedule -p project1 -u user

Or you can use the job monitor in the DIRAC web portal, selecting the failed jobs and clicking the
‘Reschedule’ button. 96

Troubleshooting
What if all your jobs failed?

Most probably there is something wrong with the steering file or the gbasf2 arguments.

A useful way to track which was the problem is (if possible) downloading the output sandbox. It contains the
logs related to your job.

97

Where to get help
https://questions.belle2.org/questions/

You can always email: comp-users-forum@belle2.org

It is a forum for discussion between users, please feel free to participate.

Sign up to receive emails:

https://lists.belle2.org/sympa/info/comp-users-forum

chat.belle2.org, e.g. https://chat.belle2.org/channel/starterkit-workshop

Documentation on confluence:

e.g. https://confluence.desy.de/display/BI/Computing+GBasf2

Other issues, look here:

https://confluence.desy.de/display/BI/Belle+II+Support+Contacts 98

https://questions.belle2.org/questions/
mailto:comp-users-forum@belle2.org
https://lists.belle2.org/sympa/info/comp-users-forum
https://chat.belle2.org/
https://chat.belle2.org/channel/starterkit-workshop
https://confluence.desy.de/display/BI/Computing+GBasf2
https://confluence.desy.de/display/BI/Belle+II+Support+Contacts

