# **Triggering at Bellell**

2022/11/29 KEK Taichiro Koga

## Self introduction



# Trigger?

### -"Trigger" in dictionary

trig-ger<sup>1</sup> /ˈtrɪgə \$ -ər/ •• • AWL (also trigger off) verb [transitive] 🕩 📢

- 1 to make something happen very quickly, especially a series of events
  - The assassination triggered off a wave of rioting.

• Certain forms of mental illness can be triggered by food allergies.

trigger a memory (=make you suddenly remember something)

- His action triggered a massive response from the government.
- ▶ 詳細は シソーラスの 参照 cause
- 2 to make something such as a bomb or electrical system start to operate 
   ) The burglars fled after triggering the alarm.

#### -"Trigger" in particle physics (wikipedia)

-a **trigger** is a system that uses criteria to rapidly decide which <u>events</u> in a <u>particle detector</u> to keep when only a small fraction of the total can be recorded.

## Example of cosmic trigger with scintillator

Take cosmic muon with two scintilaltors and an oscilloscope
 -oscilloscope can record data with 1ms timing window
 -cosmic rate = 1Hz

-If we record waveform randomly by hand, we can not see cosmic signal -Expected cosmic signal per a record = 1ms × 1Hz= 10<sup>-3</sup> -Most of data is garbage



## Example of cosmic trigger with scintillator

- -Add cosmic trigger circuit to take coincidence of two scintillator signals -Discriminator: detect rising of analog signal.
- -Coincidence: take AND of digital signal.
- -Delay: delay analog signal.
- -Now we can record the cosmic signal !
- Most of data is interested signal



## Example of cosmic trigger with scintillator

-Add cosmic trigger circuit to take coincidence of two scintillator signals
 -Discriminator: detect rising of analog signal. -no deadtime digital conversion
 -Coincidence: take AND of digital signal. -no deadtime digital calculation
 -Delay: delay analog signal. -Signal buffer with fixed latency



general trigger elements

## Necessity of trigger in real experiments

- -If your experiment can record all of data, trigger not needed. It depends -signal and background event rate
  - -recorded data size per an event
  - -budget
- -Otherwise, trigger is needed. Example of Bellell:
  - -beam crossing rate: ~250MHz, minimum 2ns interval too large! $\rightarrow$ select events
  - -Bellell data size per an event: <u>~1MB</u>
  - -Trigger less data size per second: ~250MHz × ~1MB = ~250TB/s



e⁺e⁻ beam

~1MB data size per an event



### Trigger in various experiments: emulsion

Emulsion: special photographic film with ultimate position resolution
 Record trajectories of all charged particles passing through the film
 Develop a photo and analysis with microscope

-<u>OPERA</u>, <u>NINJA</u>, <u>GRAINE</u> experiments etc. recently.





-Trigger is not needed at all for the emulsion

NINJA

Trigger in various experiments: accelerator neutrino (T2K)

-T<sub>2</sub>K: long-base line accelerator neutrino experiment

-beam rate: 8bunch/2.48s

Low! $\rightarrow$ record all events

-data size at near detector: a few~10MB/s

-near detector can record all data in each bunch





Fig. 7. T2K beam structure and corresponding Trip-t sequencing.

<u>ND280 DAQ</u>

#### -Beam induced trigger is sufficient

## Trigger in various experiments: collider

#### -Collider experiments

-More than MHz beam crossing rate with huge pileup and data size:

need trigger

Largest Digital Camera ATLAS detector (~1.6 x 10<sup>8</sup> image sensors)



kek electronics forum

## Trigger in various experiments: collider

-Collider experiments

-Level1(0) Trigger: Hardware (electric circuit) -High-level Trigger: Software (computer)

ATLAS workshop



DATA FLOW

|                               | beam crossing | Level1                | High level              |  |
|-------------------------------|---------------|-----------------------|-------------------------|--|
| <u>ATLAS</u>                  | 40MHz         | 100kHz, 2.5µs latency | 1kHz                    |  |
| <u>LHCb</u>                   | 40MHz         | 1MHz, 4µs latency     | 12.5kHz, 0.6GB/s        |  |
| <u>LHCb</u><br><u>upgrade</u> | 30MHz         | no Level1!            | 2-5 GB/s                |  |
| BelleII                       | 250MHz        | 30kHz, 5.0µs latency  | <u>5~10kHz, 1.8GB/s</u> |  |

## Recent level1 trigger system



-Digitize detector signal on front end board. Multiple detectors provide trigger.

- -Send the signal to the trigger system with pipeline(no dead time, every clock) -due to limited bandwidth of optical transceiver, detailed data not sent
- -Decide to record the event with fixed latency of a few  $\mu$ s with FPGA.



-"Field Programmable Gate Arrays" are programmable integrated circuits -flexible modification of trigger logic, depends on operation condition or any issue

- -Satisfy latency requirement for Level1 trigger -one digital calculation takes a few ~ a few tens ns -optical transmission takes ~a few hundread ns
- -Programmed by hardware description language -VHDL, Verilog etc.





# Bellell trigger

## e<sup>+</sup>e<sup>-</sup> collision

-What kind of phenomena happen at Bellell, how often ?

| Process                                                                                                        | Rate @ designed Lumi.                    | e⁺e⁻ beam                                                   |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|
| e⁺e <sup>-</sup> bunch collision                                                                               | ~200MHz                                  | 衝突点<br>BelleII測定器の中                                         |
| Bhabha scattering ( $e^+e^- \rightarrow e^+e^-$ )                                                              | >~50kHz                                  | 交更為<br>全<br>一<br>長さらこり<br>・<br>ノメートル<br>長さらこり<br>・<br>ノメートル |
| Storage beam BG background >~300kHz                                                                            | >~150kHz(ECL 2022)<br>>~100kHz(CDC 2022) | 電子全電流<br>2.6 アンペア<br>Rhabha                                 |
| Injection beam BG                                                                                              | ~1MHz instantly                          |                                                             |
| -Two photon (e <sup>+</sup> e <sup>-</sup> > e <sup>+</sup> e <sup>-</sup> e <sup>+</sup> e <sup>-</sup> etc.) | -~10kHz                                  |                                                             |
| e⁺e⁻ → γγ                                                                                                      | ~2kHz                                    |                                                             |
| Continuum (e⁺e⁻ → uubar,)                                                                                      | ~2kHz                                    |                                                             |
| $e^+e^- \rightarrow Y(4S)$                                                                                     | ~1kHz                                    | Two photon                                                  |
| $e^+e^- \rightarrow \mu^+\mu^-$ ~15kHz                                                                         | ~0.6kHz                                  | e e                                                         |
| $e^+e^- \rightarrow \tau^+\tau^-$                                                                              | ~0.6kHz                                  | $\gamma^{(r)} \leq q_1$                                     |
| dark matter/new particle ?                                                                                     | ???                                      | $\gamma^{(7)}$ $z q$ $q$                                    |

-Treasure hunting with large amount of garbage

 $e^+$ 

 $e^+$ 

### Requirement for Bellell level1 trigger

-BelleII TDR in 2010: https://arxiv.org/abs/1011.0352

-BelleII: 40times luminosity than Belle

-maximum trigger rate is increased accordingly

l-latency is increased by upgrade of detector FE with large buffer

|                         | requirement for Bellell | requirement for Belle |
|-------------------------|-------------------------|-----------------------|
| Efficiency              | ~100% for BB pair       | ~100% for BB pair     |
| Maximum trigger rate    | 30kHz                   | ~0.5kHz               |
| Latency                 | 5.0µs                   | 2.2µs                 |
| Deadtime                | no deadtime             | no deadtime           |
| Event timing resolution | 10ns                    | ~16ns                 |

# Bellell level1 trigger system

- -CDC, ECL: main triggers for charged particles and gamma
- -KLM: trigger muon
- -TOP: measure event T0 timing



-Basic of Bellell trigger system is the same as Belle. Major changes:

- -FPGA for all logic: flexible changes
- -Large resource of FPGA(10~100times): compact system and high level logic -Optical transceiver with high bandwidth(10~100times): rich information

 $\Box$ : board

# Universal Trigger board

UT4

**QSFP** optical

transceiver

IFD

LEMO, clock

-Main board used by different subtriggers commonly

-Large IO with optical transceiver

-Large FPGA resource

-IO: RJ45, LVDS, LEMO, LED, Jtag, VME 6U -127MHz system clock

| L             |      |                                  |                                             |      |
|---------------|------|----------------------------------|---------------------------------------------|------|
|               | Hi   | story of UT dev                  | elopment                                    |      |
| Name          | Year | Main FPGA                        | Main IO                                     |      |
| UT<br>(test)  | 2006 | Spartan3                         | LVDS 448ch                                  | X    |
| UT2<br>(test) | 2008 | Virtex5<br>LX220T                | GTP 3.1Gbps × 16lane                        | LVDS |
| UT3           | 2011 | Virtex6<br>HX380T,565T           | GTX 6.2Gbps × 40lane<br>GTH 11Gbps × 24lane |      |
| UT4           | 2018 | Virtex Ultrascale<br>XCVU080/160 | GTH 16Gbps × 32lane<br>GTY 25Gbps × 32lane  | RJ4  |

-~3000000 JPY/board, ~30 boards are used

-In addition, sub trigger dependent merger board are used

# **CDC** Trigger



## CDC trigger: CDCFE->CDCTRG



-Only part of information is sent to CDCTRG with every 32MHz -wire hit information (0 or 1): 80% of all wires -TDC (2ns precision): 15% of all wires -no ADC 2.5Gbps × 16lane 5Gbps × 4lane



# CDC trigger

Measure φ, p, vertex of charged particles
-track segment finder ← minimum unit
-2D Hough transfer (2D full tracking)
-Machine learning (3D full track with z)
-Pattern matching (short, inner track without z)

axial wire

Stereo wire





track segment

► track

Ζ

### ECL trigger

#### ECLTRG logic



Degitization, waveform fit

Analogue sum of 16(4x4) crystals

#### 8736 Csl -> 546TC



-Take analog sum of 16 crystals (Trigger cell, TC. 22cm × 22cm × 30cm. cluster shape information is lost.)

-Waveform fit to estimate energy, timing





-Combine next TCs as a cluster

-if two TCs are combined, 22cm × 44cm × 30cm size. Big.

-Finally measure cluster
energy, timing and position.
>100MeV required to clusters.



# **KLM** Trigger

-Search muon in each sector

-Simply count number of hits: if #hit>7, it is judged as muon

-Tracking development is on-going



24



# Output from subtriggers

-Following information is sent from subtriggers to GRL/GDL

-CDCTRG:

-kind of track,  $\varphi,$  pt (z and  $\theta$  for 3D track in addition) of all tracks -event timing

Xnumber of full track is 12 at maximum

-ECLTRG:

-energy, position of all clusters
-event timing
X number of clusters is 6 at maximum

-KLMTRG:

-sector position of all muon candidates

# GRL/GDL

CDC

GRL

**ECL** 

Subtriggers output

Track/cluster

<u>φ matching</u>

Adjust delay

Logic calculation

Prescale

Timing decision

Level-1

KLM

-GRL: Global reconstruction logic - take φ matching of CDC/ECL/KLM/TOP



-GDL: Global decision logic -calculate if trigger condition (output bit) is satisfied or not with subtrigger input

-apply prescale

-If one of trigger bit satisfied, provide Level1 signal to take data

GDL

## List of output bit and rate 2022b

-List of output bit and prescales are listed in <u>confluence</u> (difficult for beginner due to many many jargons..)

event triggered by upper bits are excluded in lower bits in table

| Category                                  | Bit name and condition                                                                                                                                                             | Raw rate<br>(kHz)    | Exclusive<br>rate (kHz) |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|
| CDC <del>B physics</del><br>standard bits | <b>ffy</b> : #full track>=3,  z <20cm<br><b>fyo</b> : #full track>=2, Δφ>90deg,  z <20cm                                                                                           | 2.18<br>1.77         | 2.18<br>0.73            |
| ECL <del>B physics</del><br>standard bits | <pre>c4: #cluster&gt;=4 hie: Energy sum&gt;1GeV</pre>                                                                                                                              | 0.47<br>2.02         | 0.26<br>1.54            |
| Subtotal                                  |                                                                                                                                                                                    | 4.7                  | 4.7                     |
| KLM τ/dark                                | klmb2b, eklmb2b, beklm: Back to back sector hits cdcklm, seklm, ecleklm: #CDC-KLM, ECL-KLM matching>=1                                                                             | 0.51<br>1.11         | 0.46<br>0.83            |
| CDC τ/dark                                | <pre>stt: #full track&gt;=1,  z &lt;15cm, p&gt;0.7GeV syo: #full track&gt;=1, #short track&gt;=1, Δφ&gt;90deg,  z &lt;20cm fy30: #full track&gt;=2, Δφ&gt;30deg,  z &lt;20cm</pre> | 2.93<br>1.93<br>2.59 | 1.37<br>0.63<br>0.22    |
| ECL τ/dark                                | <b>ImI</b> : several combination of #cluster and energy <b>eclmumu</b> : back to back low energy hit                                                                               | 3.92<br>0.63         | 2.18<br>0.01            |
| Calibration<br>with prescale>1            | PID (two photon)<br>Other (Bhabha, γγ, random, trg)                                                                                                                                | 0.35<br>1.00         | 0.16<br>0.60            |
| Total L1                                  | OR of all bits                                                                                                                                                                     | 11.5                 | 11.5                    |

# List of output bits: B physics

#### -Traditional condition same as Belle

#### 2021c

| Physics<br>target | bit name                | condition                                                                                                                                                             | Raw rate<br>(kHz)            | Exclusive<br>rate (kHz)      |
|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|
| BB pair           | ffy<br>fyo<br>c4<br>hie | CDC #2track>=3, NNtrack>=1 with  z <20cm>=1<br>CDC #2track>=2, NNtrack>=1 with  z <20cm>=1,<br>Δφ>90deg<br>ECL #cluster>=4, 2<θid<15<br>ECL Energy sum>1GeV, 2<θid<15 | 1.40<br>1.03<br>0.13<br>0.69 | 1.40<br>0.47<br>0.08<br>0.56 |







## **BB** efficiency performance

->99% efficiency for BB pair



#### Expected efficiency to generic BB (MC)

|   | BitName | eff(%) | BitName | eff(%) | BitName | eff(%) |
|---|---------|--------|---------|--------|---------|--------|
| П | fff     | 9/11   | hie     | 95.11  | lml0    | 81.02  |
| Ч |         | 04.11  | lowe    | 99.79  | lmi1    | 0.94   |
|   | ffs     | 46.41  | lumo    | 20.04  | lml2    | 0.03   |
|   | fee     | 15 18  | lume    | 30.24  | lml3    | 0      |
|   | 155     | 10.10  | hade    | 38.24  | lml4    | 0.01   |
|   | SSS     | 3.98   | c2      | 100    | lml5    | 0      |
| Г | ffo     | 95.03  | c3      | 100    | lml6    | 1.82   |
|   | fee     | 1 2/   | <br>c4  | 99.99  | lml7    | 0.02   |
|   | 150     | 1.34   | ත්      | 99.98  | lml8    | 12.12  |
|   | SSO     | 14,04  | colofie | 00.00  | lml9    | 27.82  |
|   | fzo     | 95.03  | eciolio | 90.34  | lml10   | 30.16  |
|   | 120     | 00.00  | eclbst  | 0      | lml12   | 0      |
|   | fyo     | 0      | g_high  | 95.11  | lml13   | 0      |

# List of output bits: τ

#### -CDC-KLM, ECL-KLM matching trigger

#### 2021c

| Physics<br>target | bit name                                     | condition                                                                                                                                                                                                                                                                                             | Raw<br>rate<br>(kHz)         | Exclusive<br>rate (kHz)      |
|-------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|
| τ                 | stt<br>syo<br>yioiecl1<br>lml12<br>ecltaub2b | CDC #full track>=1, $ z <15$ cm, p>0.7GeV<br>CDC #full track>=1, $ z <15$ cm, #short track>=1, $\Delta \phi$ >90deg.<br>CDC #full track>=1, $ z <15$ cm, #inner track>=1, $\Delta \phi$ >90deg.<br>NCL $\geq$ 3, at least 1 CL $\geq$ 500 MeV(Lab)) (with $\theta$ ID = 2 - 16)<br>under optimization | 1.74<br>0.74<br>0.37<br>0.17 | 0.96<br>0.38<br>0.08<br>0.03 |







## $\tau$ efficiency performance

- >~90% efficiency for tau 1x1 with good data/MC agreement
 [-CDC:~90% eff. with stt
 [-ECL: ~90% eff. with hie, Imlx

#### -Data/MC check is on-going with tau experts

-ECLTRG Data/MC agreement is ~1% level with MC14 -Trigger systematic is ~0.5%





#### List of output bits: lowmulti/dark -Mainly ECL based photon trigger

| -Mainly I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2021c    |                                                                                                                           |                   |                         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|--|--|--|
| Physics<br>target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bit name | condition                                                                                                                 | Raw rate<br>(kHz) | Exclusive<br>rate (kHz) |  |  |  |
| Z'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fy30     | CDC #full track>=2, Δφ>30deg, # z <20cm >=1                                                                               | 1.59              | 0.14                    |  |  |  |
| ISR,π0 FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lml2     | ECL one $CL \ge 2$ GeV(CM) with $\theta$ ID = 2, 3, 15 or 16                                                              | 0.18              | 0.01                    |  |  |  |
| single γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lml6     | ECL only one $CL \ge 1$ GeV(CM) with $\theta$ ID = 4 - 15 and no other $CL \ge 300$ MeV(Lab) anywhere                     | 0.18              | 0.03                    |  |  |  |
| single γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lml7     | ECL only one $CL \ge 1$ GeV(CM) with $\theta$ ID = 2, 3, or 16 and no other $CL \ge 300$ MeV(Lab) anywhere                | 0.15              | 0.04                    |  |  |  |
| ALP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lml8     | ECL 170° < $\Delta\phi$ CM< 190° , both CL > 250 MeV(Lab), no 2GeV(CM) CL in an event                                     | 0.08              | 0.05                    |  |  |  |
| ALP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lml9     | ECL 170° < $\Delta\phi$ CM< 190° , one CL < 250 MeV(Lab), one CL > 250 MeV(Lab), no 2GeV(CM) CL in an event               | 0.34              | 0.28                    |  |  |  |
| dark<br>photon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lml16    | ECL only one CL $\ge$ 0.5 GeV(CM) with $\theta$ ID = 6-11 and no other CL $\ge$ 300 MeV(Lab) anywhere, #CDC full track==0 | 0.32              | 0.23                    |  |  |  |
| photon other CL ≥ 300 MeV(Lab) anywhere, #CDC full track==0<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2<br>Iml2 |          |                                                                                                                           |                   |                         |  |  |  |

#### List of output bits: lowmulti/dark -Mainly ECL based photon trigger

ECL



back to back, both E>250MeV, no other >2GeV, all θ region

2870(ECL Fange

ECL





back to back, one E>250MeV, one E<250MeV, no other >2GeV, all  $\theta$  region 3

### Bhabha veto with ECL trigger

-Two back-to-back high energy electron is produced by Bhabha. -If following condition satisfied at ECLTRG, it is judged as bhabha [E1>4.5GeV, E2>3.0GeV, 160<Δφ<sub>CM</sub><200deg, 165<Σθ<sub>CM</sub><190deg] ->~80% Bhabha rejection

-Modification of veto logic is on-going for small scattering angle (radiative) Bhabha



## Injection BG rejection with kicker signal

-Huge background appear just after beam injection

-L1 is vetoed when pre-kicker signal sent from machine ->~99% BG rejected



- -It causes the largest DAQ deadtime of ~5%.. -continuous monitoring to minimize the BG duration corporate with SKEKB people
  - -improving veto logic to minimize deadtime



### Dead time issue

- -Injection veto causes the DAQ dead time:  $\sim$  length of injection veto Dead time = (dead time per injection) × (averaged injection rate)
- -Injection veto causes the largest DAQ deadtime (2022ab: 5~15%)



## High trigger rate issue

-L1 rate reached ~11kHz at maximum. It is almost DAQ limit before LS1. -Reduction of L1 rate and reinforcement of HLT are needed during LS1.



## High trigger rate issue

-Trigger rate in 2022b was very high

- -Total L1 rate=~11.5kHz, Luminosity=~4.5 × 10^34
- -Trigger rate will exceed DAQ limit of 30kHz in future

#### -We can not keep high B physics efficiency with present system.



Major Upgrade is on-going during LS1:
 aim to reduce ~50% CDCTRG rate (challenge!)
 optimization and priority of trigger bits for low muliti phycis

### Prescale discussion

-We are now discussing trigger menu and prescale after LS1

-If you are using specified trigger bits for your analysis, please let us know -Otherwise the trigger bits can be discarded or CDC-ECL matching applied -<u>Jira</u>

-physics-TRG session at Dec.1<sup>st</sup> on TRG-DAQ workshop

|       | Trigger bit for lowmulti physics             | Enrico Graziani   |
|-------|----------------------------------------------|-------------------|
|       | Nara Women's University                      | 15:30 - 15:50     |
|       | Trigger bit for tau physics                  | Alberto Martini   |
| 16:00 | Nara Women's University                      | 15:50 - 16:10     |
|       | Trigger bit for PID (two photon)             | Kenta Uno         |
|       | Nara Women's University                      | 16:10 - 16:30     |
|       | Bhabha veto                                  | Junhao Yin        |
|       | Nara Women's University                      | 16:30 - 16:50     |
|       | Physics performance vs time since injection  | Petar Kevin Rados |
| 17:00 | Nara Women's University                      | 16:50 - 17:10     |
|       | Trigger menu discussion after LS1 and beyond | Taichiro Koga     |
|       | Nara Women's University                      | 17:10 - 17:30     |

### When you start physics analysis

-If your physics mode has high multiplicity, high efficiency is expected -we expect no need to take care trigger so much for your analysis

-Xrecently, degradation of CDCTRG has seen with gain drop. signal yield check in each bucket etc. is needed and very welcome to ensure the expectation and stability

#cluster>=4 efficiency
with hadronb2

exp26 c4 efficiency, N{c4&(fff|ffo|ffb)}/N(fff|ffo|ffb)



#fulltrack>=3 efficiency with hadronb2

exp26 ffy efficiency, N{ffy&(c4|hie)}/N(c4|hie)



### When you start physics analysis

-If your physics mode has low multiplicity, you should care trigger

-0. contact trg-performance group (Chris) to consult with it. Read Sphinx.

- -1. choose high efficient trigger bit for your physics mode
- -2. estimate trigger efficiency of your signal with MC:

$$\epsilon = rac{N_{
m ffy}}{N_{
m all}}$$

where  $N_{
m all}$  is the number of all generated events, and  $N_{
m ffy}$  is the number of  $\__{
m ffy}$  satisfied events

-3. check data/MC agreement with reference bit, independent from signal bit:

$$\epsilon_{\text{exp}} = \frac{N_{\text{fff}} \text{ and } (N_{\text{hie}} \text{ or } N_{\text{c4}})}{N_{\text{hie}} \text{ or } N_{\text{c4}}}$$

reference bit

 -4. if you are using CDC-ECL matching etc., control sample (like μμγ) is needed to ensure independence of reference bit and signal bit.



## Summary

-Try to introduce trigger

- -various importance with various experiments -hardware(FPGA) and/only software(computer) trigger for collider
- -Bellell trigger
  - -CDC, ECL, KLM, TOP with φ matching
- Unique logics on FPGA
- -Many trigger conditions with B,  $\tau$  and low multi physics

#### -TRG-DAQ workshop is on-going

- -https://indico.belle2.org/event/7727/timetable/#20221129
- -useful for more detailed discussion and information
  - -welcome physics-TRG session on 1<sup>st</sup> December

## backup

#### List of output bit and rate 2021c -List of output bit and prescales are listed in <u>confluence</u> (difficult for beginner due to many many jargons..)

-Total rate of physics trigger bits is  $^{6}$ kHz @ L= $^{1.5} \times 10^{34}$  with bad BG

| Physics<br>target | bit                                          | PS                    | Raw<br>rate<br>(kHz)         | HLT pass<br>rate<br>(kHz)    | Exclusiv<br>e rate<br>(kHz)  | Physics<br>target                                                                                     | bit      | PS   | Raw<br>rate<br>(kHz) | HLT pass<br>rate<br>(kHz) | Exclusive<br>rate<br>(kHz) |
|-------------------|----------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------|----------|------|----------------------|---------------------------|----------------------------|
| BB                | ffy                                          | 1                     | 1.40                         | 0.10                         | 1.40                         | ISR,π0 FF                                                                                             | lml2     | 1    | 0.18                 | 0.076                     | 0.01                       |
| fyo<br>c4         | fyo<br>c4                                    | 1                     | 1.03<br>0.13                 | 0.13                         | 0.47<br>0.08                 | single γ                                                                                              | lml6     | 1    | 0.18                 | 0.020                     | 0.03                       |
|                   | hie                                          | 1                     | 0.69                         | 0.24 0.56<br><b>2.52</b>     | 0.56                         | single γ                                                                                              | lml7     | 1    | 0.15                 | 0.016                     | 0.04                       |
|                   | subtotal                                     |                       |                              |                              |                              | 2.52                                                                                                  | ALP      | lml8 | 1                    | 0.08                      | 0.020                      |
| muon              | mu_b2b                                       | 1                     | 0.35                         | 0.017                        | 0.32                         | ALP                                                                                                   | lml9     | 1    | 0.34                 | 0.051                     | 0.28                       |
|                   | beklm                                        | m 1                   | 0.04                         | 0.004<br>0.004               | 0.04<br>0.18                 | dark γ                                                                                                | lml16    | 1    | 0.32                 | 0.035                     | 0.23                       |
|                   | lml10                                        | 1                     | 0.49                         | 0.06                         | 0.36                         |                                                                                                       | subtotal |      |                      |                           | 0.64                       |
|                   | eclmumu 1<br>cdcklm12 1                      | 1<br>1                | 0.30<br>0.27                 | 0.034<br>0.034               | .034 -<br>.034 0.15          | -Raw rate = rate of each bit                                                                          |          |      |                      |                           |                            |
|                   | eclklm1<br><b>subtotal</b>                   | 1                     | 0.42                         | 0.023                        | 0.30<br><b>1.35</b>          | -HLT pass rate = rate of each bit                                                                     |          |      |                      |                           |                            |
| τ                 | stt<br>syo<br>yioiecl1<br>lml12<br>ecltaub2b | 1<br>1<br>1<br>1<br>1 | 1.74<br>0.74<br>0.37<br>0.17 | 0.18<br>0.09<br>0.06<br>0.10 | 0.96<br>0.38<br>0.08<br>0.03 | after HLT filtering<br>-Exclusive rate = rate after excluding<br>event overlap between different bits |          |      |                      |                           | ing<br>bits.               |
|                   | subtotal                                     |                       |                              |                              | 1.45                         | upper bits are prioritized.                                                                           |          |      |                      | 44                        |                            |

### storage beam BG rejection with CDC trigger

-beamBG is coming from large Z vertex with low momentum  $\rightarrow$  ~50times BG rejection by vertex and momentum cut





# CDC trigger: Track segment finder (TSF)

- -Find bunch of wire hits (Track segment, TS) in each super layer
- -TS is a minimum unit of CDC Trigger
- -pt>~0.35 is required (low pt with large curvature does not form TS)



### CDC trigger: 2D tracking

-Transform TS in axial layer to Hough plane (pt,  $\phi$ ) with curcle -Find a peak to reconstruct 2D track



## CDC trigger: 3D tracking

-Neural net with 2D track and TS in stereo layers to measure z position -Training is done at offline with offline reconstructed track as teacher -Result of training is implemented to FPGA with LUT



### CDC trigger: inner track, short track

-Short/inner track is reconstructed with coincidence of 5/3 TSFs -short: Look up table is made to search required  $\phi$  pattern -inner: just require three TSFs in ±4 wire in  $\phi$ 

Not planned at Bellell but added since 2020
 -large θ acceptance for low multi physics and two photon
 -no z measurement: high trigger rate



#### Trigger menu and rate @ 2022/6/9, exp26r1261

-Total L1 rate=~11.5kHz, Luminosity=~4.5 × 10^34

-Others = 6.8 kHz

-Rate of standard bits (ffy+fyo+c4+hie) = 4.7kHz: need to keep until end of BelleII

event triggered by upper bits are excluded in lower bits in table

| Category                                  | Bit name and condition                                                                                                                                                             | Raw rate<br>(kHz)    | Exclusive<br>rate (kHz) |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|
| CDC <del>B physics</del><br>standard bits | <b>ffy</b> : #full track>=3,  z <20cm<br><b>fyo</b> : #full track>=2, Δφ>90deg,  z <20cm                                                                                           | 2.18<br>1.77         | 2.18<br>0.73            |
| ECL <del>B physics</del><br>standard bits | <b>c4</b> : #cluster>=4<br><b>hie</b> : Energy sum>1GeV                                                                                                                            | 0.47<br>2.02         | 0.26<br>1.54            |
| Subtotal                                  |                                                                                                                                                                                    | 4.7                  | 4.7                     |
| KLM τ/dark                                | klmb2b, eklmb2b, beklm: Back to back sector hits cdcklm, seklm, ecleklm: #CDC-KLM, ECL-KLM matching>=1                                                                             | 0.51<br>1.11         | 0.46<br>0.83            |
| CDC τ/dark                                | <pre>stt: #full track&gt;=1,  z &lt;15cm, p&gt;0.7GeV syo: #full track&gt;=1, #short track&gt;=1, Δφ&gt;90deg,  z &lt;20cm fy30: #full track&gt;=2, Δφ&gt;30deg,  z &lt;20cm</pre> | 2.93<br>1.93<br>2.59 | 1.37<br>0.63<br>0.22    |
| ECL τ/dark                                | <b>ImI</b> : several combination of #cluster and energy <b>eclmumu</b> : back to back low energy hit                                                                               | 3.92<br>0.63         | 2.18<br>0.01            |
| Calibration<br>with prescale>1            | PID (two photon)<br>Other (Bhabha, γγ, random, trg)                                                                                                                                | 0.35<br>1.00         | 0.16<br>0.60            |
| Total L1                                  | OR of all bits                                                                                                                                                                     | 11.5                 | 11.5                    |

## List of output bits: muon pair

#### -KLM and ECL stand alone trigger

| Physics<br>target | bit name                                     | condition                                                                                                                                                                                                                                                                  | Raw rate<br>(kHz)                    | Exclusive<br>rate (kHz)      |
|-------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------|
| Muon pair         | mu_b2b<br>eklm2<br>beklm<br>lml10<br>eclmumu | #BKLM cluster>=2, Δ $\phi$ >90 deg.<br>#EKLM cluster>=2<br>#EKLM cluster=1, #BKLM cluster=1<br>ECL 160 <Δ $\phi_{CM}$ < 200 deg, 160 < Σ $\theta_{CM}$ < 200deg, no<br>2GeV(CM) CL in an event<br>ECL 160 <Δ $\phi_{CM}$ < 200 deg, 165 < Σ $\theta_{CM}$ < 190deg, E<2GeV | 0.35<br>0.04<br>0.20<br>0.49<br>0.30 | 0.32<br>0.04<br>0.18<br>0.36 |



## List of output bits: single muon

#### -CDC-KLM, ECL-KLM matching trigger

| Physics<br>target | bit name  | condition             | Raw rate<br>(kHz) | Exclusive<br>rate (kHz) |
|-------------------|-----------|-----------------------|-------------------|-------------------------|
| Single            | cdcklm1-2 | #CDC-BKLM matching>=1 | 0.27              | 0.15                    |
| muon              | ecleklm1  | #CDC-EKLM matching>=1 | 0.42              | 0.30                    |



### Dimuon efficiency performance

-High efficiency for Dimuon with wide angle coverage



## List of output bits: muon pair

-KLM and ECL stand alone trigger





back to back, E<2GeV all θ region

## TSIM

-TSIM has been developed and can be used for physics analysis

-KLMTRG core logic modified with release06 to be consistent with firmware -most of trigger bits are implemented with release06 -~5% data/MC agreement for signal efficiency estimation (tau)

-Useful links

-Available and missing trigger bits in TSIM release05

-How to generate signal MC with release06

- example code

- release-06-00-05 or later with global tag of "L1\_config\_exp\_22\_run\_290"

#### -Available event variables

-L1FTDL(name),L1FTDLBit(bitnumber) returns if the output bit satisfied w/o prescale.
-L1PSNM(name),L1PSNMBit(bitnumber) returns if the output bit satisfied w/ prescale.
-L1Input(name),L1InputBit(bitnumber) returns if the input bit satisfied
-source code: analysis/variables/src/TriggerVariables.cc

-Make Jira ticket and notify us if you have any TRG software request  ${\ensuremath{\textcircled{\circ}}}$ 

### Data taking with trigger

-Bファクトリー 「電子(7GeV)・陽電子(4GeV)衝突型加速器(SuperKEKB) -衝突点の周りに粒子検出のための装置(Bellell検出器) -KEKBの数十倍のルミノシティ(~6×10<sup>35</sup>cm<sup>-2</sup>s<sup>-1</sup>). 積分50ab<sup>-1</sup>.



-測定する物理 -B,D,τの精密測定 -ダークマター探索 -ハドロン物理 など

### Level 1 trigger system

-複数のデジタル回路(FPGA)の組み合わせ

中央飛跡検出器(CDC)トリガー 荷電粒子の本数、飛跡、生成点

電磁カロリメータ(ECL)トリガー 荷電粒子・光子のエネルギー、クラスター数、位置







#### CDC

#### -CDC:セントラルドリフトチェンバー -荷電粒子の飛跡を再構成.本数、電荷、運動量、生成点



### CDC trigger: BG rejection

#### -飛跡の生成点(z位置)が3次元飛跡再構成でわかる →IP外からくる、ビーム由来の背景事象を大幅に削減可能



-2021年春から3Dtrackを運転に使用 |z|<20cmを要求 -トリガーレートを半分以下に削減、efficiencyの変化1%未満 -"1荷電粒子イベント"がトリガー可能に →τのefficiency 1.5倍

#### **ECL**

#### -ECL:電磁カロリメータ -光子・荷電粒子のエネルギー クラスター数





KLM

#### -KLM:KL/μ検出器 「-μの同定 -κլ⁰の検出



#### -鉄+プラスチックシンチレータ or RPCのサンドイッチ構造 × 15 -Bellell でendcapとbarrelの一部をプラシンへ交換 (放射線による不感への耐性)





-Bhabha散乱 (e+e-→e+e-) veto 「-断面積が大きい ECL triggerでveto 」-条件: E1>4.5GeV, E2>3.0GeV, 160<Δφ<sub>cM</sub><200deg, 165<Σθ<sub>cM</sub><190deg -現在はvetoなし 今後×10,100にプレスケール

-入射ビームバックグラウンド veto
-ビーム入射後数~十数ms
入射バンチ前後をveto
-DAQ dead time ~数% 今後の改善が必要



| 表 1: 物理         |               |                   |       |
|-----------------|---------------|-------------------|-------|
| Process         | $\sigma$ (nb) | Rate (Hz)         |       |
| $\Upsilon$ (4S) | 1.2           | 960               |       |
| Continuum       | 2.8           | 2200              |       |
| $\mu^+\mu^-$    | 0.8           | 640               |       |
| $	au^+	au^-$    | 0.8           | 640               |       |
| Bhabha          | 44            | 350 <sup>-3</sup> | 1/100 |
| $\gamma\gamma$  | 2.4           | 19 <sup>3</sup>   | 1/100 |
| Two photon      | 12            | 10000 4           |       |
| Total           | 67            | $\sim \! 15000$   |       |
|                 |               |                   |       |

