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Outline
● What this talk is NOT about;

● Introduction:
➔ what is PID (for)?
➔ do you need PID for your analysis?
➔ how can you use PID effectively? What should you be careful about?

● PID at Belle II:
➔ global / binary likelihood ratios;
➔ weighted likelihood(s);
➔ machine learning approaches;

● PID performance and corrections:
➔ why do you need them?
➔ using the “old style” PID tables;
➔ using the Systematics Framework.
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What this talk in NOT about
You might be a bit disappointed by my presentation today because:

● I will not cover in detail how the Belle II sub-detectors contribute to PID (in 
fact this is the subject of Samo’s talk yesterday);

● I will not give you “magic numbers” that you can paste right away into the 
systematics table of your B2Note;

● I will not give you simple and universal recommendations, because eventually 
the choices one has to make (and the uncertainties one will get) depend very 
strongly on your analysis;

My goal today is to give you some guidance on how to use 
existing tools, so that you can take advantage of them to improve 
the sensitivity of your analysis and you are able to estimate the 
corrections and uncertainties by yourselves.
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Introduction
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What is PID?
● At Belle II we produce 6 types of stable charged particles: electrons, muons, 

pions, kaons, protons, and deuterons (which I will mostly disregard in this talk);

● The task of PID is to distinguish among 
these different kinds of particles:

● In practice, the identification will never be perfect:
➔ the efficiency (probability that the particle 

I want to select is actually selected) will 
be < 100%;

➔ the mis-identification rate (probability 
that a particle that I do NOT want to select 
is actually selected) will be > 0%.

JHEP 2022, 63 (2022)

p enhanced

K enhanced

B → DK

B → Dp

B → DpB → DK
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Is PID relevant for Belle II?
● Yes, it is! Flavor physics is (almost) all about distinguishing among final states 

that are accessible to the same mother particle;

● Sometimes PID is the only handle that allows you to separate between very 
similar final states, e.g.:
➔ B0 → K*0 g / r0 g ;
➔ D0 → p+p- / m+m- ;
➔ t+ → e+ n n, m+ n n, p+ n;

● Very precise LFUV measurements require a very good control over the 
efficiencies and the background contaminations (e’s and m’s are easy to 
distinguish, but p’s can fake both!);

● PID plays a very important role in the B and Charm Flavor Taggers. A drop or 
improvement in the PID performance will have a sizable impact on the tagging 
performance.
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Is PID relevant for you?
● Not necessarily! It ultimately depends on your analysis;

● There are quite a few cases in which you don’t want to use PID:
1) Your S/N ratio is already very high: applying PID will lower your efficiency 

without any significant benefit from background reduction.                        
Example: we can select clean samples of K

S 
→ p+p- by cutting on the flight length 

significance, applying PID won’t help much against a background that comes 
mostly from random combinations of p’s;

2) Your main backgrounds have the same final state particles as your signal. 
Example: PID won’t help you distinguishing f → K+K- from f

0
 → K+K- ;

3) Your backgrounds are easy to deal with (because of their shape and/or they can be 
studied using data control samples).                                                             
Example: continuum background in many B → hadronic analyses.

● You should also be aware that PID comes with systematic uncertainties: the 
benefits from using it should at the very least outweigh its drawbacks.
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What is the recommended PID cut?
● Again, it depends on your analysis, we cannot give a one-fits-all 

recommendation;
● Typically one optimizes the selection using the figure of merit:

● But this is not the only option:
➔ you might have a background source that will bring in a large systematic 

uncertainty (because it is not well known/simulated, … ) in this case you 
want to cut harder and increase your S/N ratio;

➔ your background is harmless, so you might live with relatively low S/N 
ratio and enjoy a larger signal efficiency.
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What are the potential pitfalls?
● Analyses are designed on a number of (explicit or implicit) assumptions;
● Our Monte Carlo is built on many assumptions (about particle decays, 

hadronization models, particle/detector interactions, performance, … );

● Always check your assumptions!

● Have a look at the data (not the signal region!) sooner rather than later:
➔ can you find a control sample reasonably similar to your signal?
➔ are your sidebands reasonably well populated?

● You might discover that some backgrounds are not well simulated, or even not 
included at all in our Monte Carlo. So you would need to go back and re-
optimize your (PID) selection.
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PID at Belle II
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Analysis level inputs
● All BelleII sub-detectors (with the exception of the PXD) contribute to PID;
● Each of them provides the “likelihood”: 

where the d index runs over the subdetectors, 
and a over the particle types;

● In basf2, you can access the (positive) log likelihood given by a specific 
subdetector for a particular particle type by asking something like:

Example: 

the quantity               is 
related to the probability 
that the particle under 
study is a muon, based on 
the KLM information

mcPDG (Lund code) of the 
particle I am interested in
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Example
● Let’s generate a ParticleGun particle and see what the BelleII subdetectors think 

about it:

● The tracking tells us: 
p = 2.00354 Gev/c   cosq = -0.47389 phi = -0.57255

● The PID log likelihoods, for each subdetector and each hypotesis are:

e m p K p d

SVD -2.54876 -1.15602 -1.15602 -1.21668 -1.48521 -4.60517

CDC -2.85408 -0.08678 -0.00840 -0.23215 -0.02462 -8.27275

TOP -538.954 -538.949 -538.950 -538.103 -536.000 -534.300

ARICH - - - - - -

ECL -4.89060 -4.14807 0.10629 0.06672 0.42025 0.16023

KLM -6.40549 -1.64323 -4.19844 -1.89742 -4.49254 -4.88627

So, what is this particle?
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Example

● I highlighted the hypotheses for which each sub-detector gives the highest log-
likelihood;

● The SVD is undecided between m and p, the CDC prefers the p, the TOP thinks 
it’s a K, for the ECL it’s a p, and for the KLM it’s a m;

(I admit I chose this track because it looks somewhat problematic)

How do we summarize this information and get a more definitive answer?

e m p K p d

SVD -2.54876 -1.15602 -1.15602 -1.21668 -1.48521 -4.60517

CDC -2.85408 -0.08678 -0.00840 -0.23215 -0.02462 -8.27275

TOP -538.954 -538.949 -538.950 -538.103 -536.000 -534.300

ARICH - - - - - -

ECL -4.89060 -4.14807 0.10629 0.06672 0.42025 0.16023

KLM -6.40549 -1.64323 -4.19844 -1.89742 -4.49254 -4.88627
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Example
● To extract the full information about a particle, we can multiply the likelihoods:

or equivalently sum the log-likelihoods:

e m p K p d
SVD -2.54876 -1.15602 -1.15602 -1.21668 -1.48521 -4.60517

CDC -2.85408 -0.08678 -0.00840 -0.23215 -0.02462 -8.27275

TOP -538.954 -538.949 -538.950 -538.103 -536.000 -534.300

ARICH - - - - - -

ECL -4.89060 -4.14807 0.10629 0.06672 0.42025 0.16023

KLM -6.40549 -1.64323 -4.19844 -1.89742 -4.49254 -4.88627

Sum -555.653 -545.983 -544.207 -541.383 -541.582 -551.904

The K hypothesis gets the highest (i.e. less negative) score.
The p hypothesis follows closely
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Likelihood Ratios – binary PID
● How do we compare e.g. the K hypothesis vs the p?
● A standard and popular approach is to take the lihelihood ratio:

which is equivalent to:

● The quantity P(K vs p) is bound to be in [0, 1], so it can be interpreted as a 
probability;

● Going back to the example we 
have been discussing: 

LL
K
 = -541.383

LL
p
 = -541.582

DLL
pK

 = -0.199

which gives:

P(K vs p) = 0.5496
P(p vs K) = 0.4504

so, yes, the K hypothesis 
is slightly favored, but 
not by much
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Likelihood Ratios – binary PID
● Obviously you are not expected to compute all this by hand, basf2 will 

immediately provide the binary likelihood ratio we have just defined:

● If we plot P(K vs p), we obtain 
something like: 

mcPDG of the particle whose L 
goes in the numerator

mcPDG of the particle whose L 
goes in the denominator

K-likep-like

undecided

(this is a ~random sample 
of tracks, that contains 
also e’s, m’s and p’s)
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Likelihood Ratios – global PID
● Binary PID is great if you have a specific source of background that you want to 

suppress;
● In more generic cases, you want to compare a particle hypothesis (e.g. kaon) 

against all others, thus switching to the global likelihood ratio:

which is equivalent to:

● Crunching the numbers of the 
example track, we get:

P(e)  = 3.36 x 10-7

P(m)  = 0.00531

P(p)  = 0.03142

P(K) = 0.52965

P(p)  = 0.43361

P(d)  = 1.43 x 10-5
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Likelihood ratios – global PID
● The global likelihood ratios I just defined 

are the default PID variables, that you 
can access from basf2.

In other words, by default all sub-detectors 
are considered, and a particle hypothesis is 
checked against all others;

● The distribution of e.g. kaonID is like:

K-like
anything 
else-like

(this is the same sample of 
tracks I used for the binary 
K vs p example)
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Likelihood ratios – comments
Q: Does P(a) = 0.8 mean that, in a small interval centered around P(a) = 0.8, 

80% of the particles are a, and the remaining 20% is accounted for by all 
the other species?
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Likelihood ratios – comments
Q: Does P(a) = 0.8 mean that, in a small interval centered around P(a) = 0.8, 

80% of the particles are a, and the remaining 20% is accounted for by all 
the other species?

No (or at least not necessarily). One key point to remember is that the various 
particles are not produced with the same abundance (the most abundant ones 
are the pions). The PID framework does not know anything about it.

If you want to figure out what to expect after your PID selection you will 
have to use the efficiency and fake rates that we will define later on. 

A: 
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Likelihood ratios – comments
Q: Given that they include all the subdetectors, is it guaranteed that the 

global PID variables provide the best PID information?
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Likelihood ratios – comments
Q: Given that they include all the subdetectors, is it guaranteed that the 

global PID variables provide the best PID information?

I am afraid the answer is no, for several reasons:

1) the combination of the likelihoods assumes that the inputs are 
uncorrelated (typically a good assumption, but … );

2) sub-detectors can have “blind spots”: the global PID ignores the fact that 
there are regions of the phase space for which a sub-detector are not very 
reliable (think of the points where the dE/dx bands cross); 

3) DLLa = x does not correspond to the same separation power for all sub-
detectors. I will come back to this very soon;

4) background conditions affect sub-detectors in different ways;

5) ...

A: 
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Going beyond likelihood ratios
● In principle, with the little knowledge on PID inputs I already covered, you 

could build your own likelihood ratio, excluding some sub-detectors and 
concentrating only on some particle hypotheses, so that it is most useful to 
your analysis;

● This would not be practical, though, so we (the PID group) are trying to 
provide some standard tools that you can use out of the box. I will briefly 
mention:

1) Re-weighted likelihood;

2) Multivariate approaches, including also other variables 
(well established in leptonID, coming soon for hadronID)
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Re-weighted likelihood ratios
● This has been explored by the PNNL group in BELLE2-NOTE-TE-2021-027;
● In the default approach, we combine information from 6 sub-detectors about 6 

particle hypothesis in:

● Idea: multiply each of the 36 inputs by a w
p,d

 weight and optimize the weights 
so that the separation power is optimal:

● Let me skip all the details of the optimization (that I encourage you to look by 
yourselves) and jump to the results!

Where d runs over the sub-detectors 
and p over the particle hypotheses.
This is just the same definition of the 
global likelihood ratio I gave above.

If you set all w
p,d

 weights to 1, you 
jump back to the default case

https://docs.belle2.org/record/2721
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Re-weighted likelihood

The above weights matrix might be puzzling to some of you (for good reasons), but:
➔ it significantly improves the performance, in vast areas of the phase space;
➔ it is easy to reproduce (targeting e.g. the momentum region that is relevant for 

your analysis). Yo Sato-san implemented the software infrastructure in basf2 
and provided some examples, see e.g. this talk.  

I grabbed this nice representation 
of the weights matrix from one of 
Geraldine's talks

https://indico.belle2.org/event/7423/contributions/38850/attachments/17786/26438/AnaSw_yosato_PIDCalibrationWeights_20220721.pdf
https://indico.belle2.org/event/7479/contributions/46375/attachments/18922/28127/hID_Performance_Raeuber-Wallner.pdf
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Multivariate approaches
● One other approach is to use multivariate approaches based on machine 

learning, like Neural Networks or BDT’s;

● Advantages:
➔ you can use a large number of variables and include anything that provides some 

discimination (no matter how small);
➔ these tools are typically good at handling correlations and finding the optimal 

choice in each corner of the phase space;
➔ if the variable “time” (or a proxy) is included, they can also track the evolution of 

the detector;
➔ we do not need to model analytical pdf’s by ourselves, the tool will take care of 

that.

● Disadvantages:
➔ they need to be re-trained at every release change;
➔ typically they are “black boxes”, so it is not easy to check what’s going on under 

the hood. (But we test them on independent control samples, so we know that they 
are reliable).
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Multivariate approaches – leptonID
We have been using BDT’s for a few years now, to have better lepton ID, especially 
at low momentum, using as input:

From BELLE2-NOTE-TE-2021-011

https://docs.belle2.org/record/2340
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Multivariate approaches – leptonID
Already available, BDT’s using 
analysis level information:

Coming soon, BDT’s and CNN’s using 
also reco level information:

In general, BDT’s give better performance, 
but it is not always the case: please check 
what is best for your analysis!

For more information, please 
see Marcel's and Anja's talks. 

https://indico.belle2.org/event/7479/contributions/46376/attachments/18929/28142/20221010_LID_MVA_B2GM%20_upload_v2.pdf
https://indico.belle2.org/event/8111/contributions/49312/attachments/19459/28892/PID_2022_16_02_an.pdf
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Multivariate approaches – hadronID
● A similar effort is ongoing to improve hadronID (in particular K/p separation);
● Neural Network combining analysis level information;
● We can actually train on real data, and improve the separation power:

For more details, please see Stefan's talk

https://indico.belle2.org/event/7479/contributions/46375/attachments/18922/28127/hID_Performance_Raeuber-Wallner.pdf
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PID performance
and corrections
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Why measuring PID performance
● I think that we agree that having good PID is likely to improve your analysis, now 

we want to ask ourselves whether we need to know precisely how good it is;

● In some cases (e.g. measurement of the mass of a resonance, of its lifetime, ...), 
you can use PID to improve the S/N ratio and just be happy with it, you main 
result will not depend significantly on the PID performance;

● In other cases it is more important:
➔ you want to measure a branching ratio and take the reconstruction efficiency 

from the MC. If PID in data is different than in MC and you ignore this 
difference, you will end up with a bias;

➔ you want to measure a charge asymmetry. PID efficiencies are slightly 
different for positive and negative particles, if you ignore this you might 
create a bias;

● In general we want to know exactly how PID works in data and in MC, and we 
want to know the uncertainty associated to these measurements.
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Efficiency and fake rates

Definitions:

➔ Efficiency: probability that the particle a is correctly identified by the PID 
selection (intended to select a and reject the others);

➔ b mis-ID probability (or fake rate): probability that the particle b passes the 
criteria meant to select a particles.

Knowing your efficiencies and fake rates is key to understand your overall signal 
(backgrounds) selection efficiencies.
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Measuring efficiencies and fake rates
● We measure efficiencies and fake rates using control samples that are very clean, that is 

we know what particles they are before applying any PID selection;

● Example: J/y → m+m- with the tag-and-probe method:
1) we select pairs of tracks with invariant mass ~3 GeV/c2;
2) we require that e.g. the negative track (tag) is 

consistent with being a muon;
3) we do not make any PID requirement on the 

other track (probe);

P(m) > x

P(p) > y

No PID selection on positive track

N
J/y

 = 100157

N
J/y

 = 95122

N
J/y

 = 4815
From this we derive that:

The m efficiency (for a cut at x) 
is ~95%

The m → p mis-ID probability 
(for a cut at y) is ~5%
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Control samples used at Belle II
We can use several control samples for all the particles we are interested in:

➔ e: e+e- → e+e- g, e+e- → e+e- e+e-, J/y → e+e-

➔ m: e+e- → m+m- g, e+e- → e+e- m+m-, J/y → m+m-

➔ p: K0
S
 → p+p- , D0 → K-p+, L0 → p p-, t+ → p+p-p+n

➔ K: D0 → K- p+, D0 → K- p+ p0, D
s
+ → f(K+K- )p+ , t+ → K+ K- p+ n

➔ p: L0 → p p- 
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Getting PID efficiencies in data/MC

You are welcome to select your own control sample, but we (the PID group):

1) centrally produce ntuples for all the maintained control samples;

2) data and MC efficiency tables (to be discontinued);

3) a software tool that allow you to use the centrally produced ntuples to 
match your specific analysis needs: the Systematics Framework (which is 
going to become the standard)
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PID correction tables
● The PID tables are simple text files that list the probabilities for a certain particle 

to pass some (common) PID selection;

● The tables:
➔ are in bins of (p, q/cosq);
➔ are produced separately for positive and negative particles;
➔ may combine different control samples;
➔ report the statistical uncertainty on the efficiencies and the data/MC ratios;
➔ report our recommended systematic uncertainty.
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PID correction tables – an example

channel,n_in_comb,is_final_comb,is_best_available,n_duplicates,is_unique,is_outlier,is_abnormal,is_sumqu
ad,is_stat_clipped_dn,is_sys_clipped_dn,is_statsys_clipped_dn,variable,charge,p_min,p_max,theta_min,thet
a_max,working_point,threshold,data_MC_ratio,data_MC_uncertainty_stat_dn,data_MC_uncertainty_stat_up,data
_MC_uncertainty_sys_dn,data_MC_uncertainty_sys_up,data_MC_uncertainty_statsys_dn,data_MC_uncertainty_sta
tsys_up,rel_data_MC_uncertainty_stat_dn,rel_data_MC_uncertainty_stat_up,rel_data_MC_uncertainty_sys_dn,r
el_data_MC_uncertainty_sys_up,rel_data_MC_uncertainty_statsys_dn,rel_data_MC_uncertainty_statsys_up,data
_MC_DISTsys_dn,data_MC_DISTsys_up

jpsill_VS_eell_VS_mumugamma,3,True,True,0,True,False,False,True,False,False,False,binaryMuonID_noSVD_pi,
+,1.0,1.5,0.4,0.64,FixedThresh05,0.500000000000000,0.94402831,0.00052499,0.00052333,0.00296079,0.0028723
6,0.00300697,0.00291964,0.05561142,0.05543582,0.3136336,0.30426618,0.31852577,0.30927502,0.0,0.0

jpsill_VS_eell_VS_mumugamma,3,True,True,0,True,False,False,True,False,False,False,binaryMuonID_noSVD_pi,
-,1.0,1.5,0.4,0.64,FixedThresh05,0.500000000000000,0.94026456,0.00051998,0.00051844,0.00301595,0.0028742
8,0.00306044,0.00292067,0.05530109,0.05513755,0.32075499,0.30568883,0.32548728,0.31062165,0.0,0.0

jpsill_VS_eell_VS_mumugamma,3,True,True,0,True,False,False,True,False,False,False,binaryMuonID_noSVD_pi,
+,1.0,1.5,0.64,0.82,FixedThresh05,0.500000000000000,0.93683487,0.0004638,0.00046287,0.00178229,0.0016815
8,0.00184164,0.00174412,0.04950675,0.04940813,0.19024544,0.17949574,0.1965814,0.18617165,0.0,0.0

[...]

Let’s take a look at the muonID correction tables, from:

/gpfs/group/belle2/users/mmilesi/perf/PID/methods/post_ichep_2022/proc12prompt/MC14ri_a/v3/efficiency
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PID correction tables – an example
Let’s plot one specific example:

Particle: m+

Variable: muonID_noSVD
Threshold: 0.9

The plot shows the data/MC ratio, as measured on the official control sample(s), for 
m+ passing the selection muonID_noSVD > 0.9
The uncertainty plotted is the sum in quadrature of stat. and syst. uncertainties.
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PID tables at work
● Suppose we are looking for D+ → K+ p0. The MC predicts that, with the integrated 

luminosity we have and taking into account all the selection efficiencies, we expect 1000 
signal events, with the (p, q) spectrum shown on the left;

● The data/MC correction table for our K PID selection is shown on the right;

Signal model kaonID data/MC correction table

What do we expect to find in the data?
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PID tables at work
● What we have to compute (for every bin of the distribution) is:

Signal model kaonID data/MC correction table
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PID tables at work

● After applying the PID corrections, we expect 932.2 signal events, because in this 
example kaonID is less efficient in data than in the MC;

● Also the (p, q) spectum is slightly distorted wrt the original distribution, because 
the data/MC efficiency ratio is not uniform across the phase space.

NB: this is a completely dummy example, with numbers I just made up.

Corrected signal model

x =
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PID tables at work – some comments
● What I discussed above is a very simplified situation;

● In real life you will have to:
➔ deal with reconstruction efficiencies, not so much with signal events;
➔ multiply the correction factors for more than one tracks in the final state, 

associating to each the correct bin;
➔ distinguish between positive and negative tracks;
➔ propagate the uncertainties (those that come from the statistics of your 

signal MC, from the other efficiencies in your analysis, and from the PID 
tables).
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PID tables – basf2 helpers
● Above I described the “by hand” method of applying the PID corrections, which you can 

apply to the ntuples you already have;

For leptonID only:
● If you still have to produce your 

ntuples, and the PID correction tables 
are already available from the database 
(check the Lepton ID confluence page
), you can use the basf2 helpers, that 
will automatically apply the 
corrections.

You can take a look at the example 
steering file:

B2A908-ApplyLIDWeights.py 

to see how they work.

● For hadronID we do not plan to have them, for the reason I will now explain.

https://confluence.desy.de/display/BI/Lepton+ID+Performance
https://stash.desy.de/projects/B2/repos/basf2/browse/analysis/examples/tutorials/B2A908-ApplyLIDWeights.py


November 29th 2022 44

Shortcomings of the PID tables
● PID tables do a great job in “standard” cases. However, as the number and 

complexity of the analyses grow, this approach starts showing its limitations;

● Suppose that:
➔ you do not use all the data for a specific campaign;
➔ you use many different thresholds (because of the optimization 

strategy you chose);
➔ you cut on some variables that are correlated to PID performance (e.g. 

isolation score, timeSinceLastInjection, nCDCHits, ...);
➔ you need a specific binning or want to bin on variables other than p, q;
➔ you do anything non-standard;
➔ …

● One would have to centrally produce an infinite number of tables...
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The Systematics Framework
● In recent times we have started using this tool (mostly developed by Sviat), 

beginning with the hadron ID samples;
● The SF is documented at:

https://syscorrfw.readthedocs.io/en/latest/index.html

● Advantages of the SF:
➔ you can use the centrally produced control samples to produce the 

correction tables that suit your needs;
➔ it uses sWeights, so you do not have to fit any distribution (this is 

done by the tool already);
➔ if what you need is “standard”, scripts and examples are available, you 

can produce what you need in less than one hour;
➔ if what you need is “non-standard”, there is ample margin for 

customization.

● The D*, L0, and K
S
 models are already available. More will come soon!

https://syscorrfw.readthedocs.io/en/latest/index.html
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Using the SF
● Let’s look at the the kaonID efficiency for kaonID > 0.9 as a function of the momentum, 

for bucket36;
● I will take:

/group/belle2/dataprod/Systematics/systematic_corrections_framework/scripts/efficiency_table.py

and pass it a json file that looks like:

{
    "display_plots": true,
    "save_plots": "kaon_efficiency_bucket36.png",
    "cut": "kaonID > 0.9",
    "particle_type": "K",
    "model_names": ["Dst"],
    "data_query": ["bucket36"],
    "precut": "nCDCHits > 20",
    "track_variables": ["p"],
    "binning": [ [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0] ],
    "output": "kaon_efficiency_bucket36.json",
    "use_percent": false
}

you can specify your selection cuts

and also your binning



November 29th 2022 47

Using the SF
● As output, I get a json file and a plot, that look like:

{
    "efficiency_table": [
        0.9447301371322525,
        0.8011868787651882,
        0.7246955232336442,
        0.6751531728809061,
        0.6251456842110087,
        0.5545854810063586,
        0.5024453742794931,
        0.548246657011927
    ],
    "bin_variables": [
        "p"
    ],
    "stat_error": [
        0.008473513956011317,
        0.0038989983184021656,
        0.003837312798146121,
        0.003831735881289033,
        0.004008309262378364,
        0.004494764509379299,
        0.004399615437385293,
        0.009028968348707865
    ],
    "total_syst_error": [
        0.020355428701701594,
        0.003784864441073177,
        0.0019675983847400325,
        0.001713641524671683,
        0.0014640717092725406,
        0.00135534652059921,
        0.001070342769574073,
        0.0002854923821761224
    ],
    …
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Using the SF
● You can compare different data periods and different tracks selections and 

see if it matters for PID:
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This is already used by analysts shooting for publication on the Moriond 2023 data set:

Producing data/MC weights

E. Ganiev et al., Search for B → K n n
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Producing data/MC weights
● You can produce your own data/MC weight tables with the script:
/group/belle2/dataprod/Systematics/systematic_corrections_framework/scripts/weight_table.py

and a json file similar to:

{
    "display_plots": true,
    "save_plots": "weights_pions_faking_kaons_proc13_chunk2.png",
    "cut": "kaonID > 0.9",
    "particle_type": "pi",
    "model_names": ["Dst"],
    "data_query": ["proc13_chunk2"],
    "mc_query": ["MC15ri_1"],
    "track_variables": ["p", "cosTheta"],
    "precut": "nCDCHits > 20",
    "event_variables": null,
    "binning": [ [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0],
                 [-0.866, -0.862, -0.4226, -0.1045, 0.225, 0.5, 0.766, 0.8829, 0.9563] ],
    "output": "weights_pions_faking_kaons_proc13_chunk2.json",
    "use_percent": false
}

here we are looking at the p 
faking K probability

the ratios will be between 
proc13_chunk2 and MC15ri
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Producing data/MC weights
● Results:

proc13_chunk2

bucket36
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Future SF developments

● More functionality is being added, mostly for the experienced and/or 
adventurous users;

1) You can perform your own kernel density estimation (KDE) fit to the 
distribution of your PID output variable (that you can later re-sample for later 
use):

https://syscorrfw.readthedocs.io/en/latest/fit_pdf_tutorial.html

2) You can correct your MC PID “on the fly” while running basf2 (similar to what 
is currently done by the basf2 helpers for the lepton ID tables), but with better 
granularity:

https://syscorrfw.readthedocs.io/en/latest/pid_resample_tutorial.html

https://syscorrfw.readthedocs.io/en/latest/fit_pdf_tutorial.html
https://syscorrfw.readthedocs.io/en/latest/pid_resample_tutorial.html
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Systematic uncertainties
● As always, this is a tricky subject and we cannot give a one-fits-all recipe;

● The tables and SF give you some systematics that are due to:
➔ the quality of the fit (signal modeling, background uncertainties);
➔ the consistency across different control samples in case there are more than one;
➔ impact of trigger in selecting the control sample;
➔ …

● There are others that might be specific to your analyis:
➔ the track multiplicity is very different from that of our control samples;
➔ our control samples are not fully adequate to represent your final state for other 

reasons;

● We have now better tools and variables (e.g. the track isolation score, that was 
recently implemented by Marco) than can assist you.
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Final remarks
● Physics analysis is fun, but it is also a complicated business;
● There are many assumptions that you make when designing an analysis: please 

question the validity of as many as you can!

● PID can greatly help improving your analysis, we provide many variables and 
tools that will assist you increasing the significance of your signal (or 
improving your upper limit), but these should be used wisely;

● We (PID group) can certainly improve on many things, but we definitely need 
your help:
➔ we cannot anticipate all your needs;
➔ we learn a lot when we interact with analysts on real life cases!

● So please, don’t be shy, get in touch with us if you think we can help and/or if 
you have interesting ideas!
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