Belle II KLM Muon and KL Particle Identification

Leo Piilonen, Virginia Tech

Belle II Physics Week Valencia November 2022

The KLM ("*K*_L–Muon detector")

consists of large-area thin planar detectors interleaved with the iron plates of the 1.5T solenoid's flux return yoke.

Backward endcap

Barrel

Forward endcap

Installing Barrel KLM Detector Module (2013)

Installing Barrel KLM Detector Module (2013)

Installing Endcap KLM Detector Module (2014)

Installing Endcap KLM Detector Module (2014)

• KLM detects K_L mesons and muons (≈ 1 per event) For example: $B^0 \rightarrow J/\psi \, K_L$ event

In the barrel KLM ...

- Continue to use the Belle-era glass-electrode RPCs in the outer 13 layers
- Install scintillators in the 2 innermost barrel layers

Our Resistive Plate Counter contains ...

30% argon

8% butane-silver

One panel has two independent RPCs

... and orthogonal readout planes.

A discharge \bigstar (=streamer) from dE/dx in <u>either</u> gas gap induces an image charge on <u>both</u> readout planes $\Rightarrow xy$ hit.

Cathode-plane strips are transmission lines ... we collect signal at end of strip

Endcap scintillator panel

An endcap scintillator panel

Scintillator (with TiO₂ reflective coating) delivers blue light to central-bore WLS fibre

Blue light from dE/dx in scintillator is captured by wavelength-shifting fibre and re-emitted as green

green photon to SiPM

blue photon

Photosensor detects the fibre's green light $\Rightarrow x \text{ or } y$ hit

- SiPM ("Silicon photomultiplier") or MPPC ("multipixel photon counter") is a Geiger-mode avalanche photodiode
- Hamamatsu S10362 attached to one end of the scintillator strip
- fibre is mirrored at other end

1.3 x 1.3 mm² 667 pixels

✓ operates in 1.5 T magnetic field

✓ 8-pixel threshold gives ε > 99%

Muons, unlike other charged particles, pass thru lots of material (dE/dx only!) ECL, magnet, yoke, ...

Muons, unlike other charged particles, pass thru lot of material (dE/dx only!)

Electrons suffer EM interactions with ECL nuclei \Rightarrow electromagnetic shower

Pions suffer strong interaction with ECL nuclei \Rightarrow hadronic shower

... or pions suffer strong interaction with KLM iron nuclei \Rightarrow hadronic shower

For muon identification, each CDC/VXD track is extrapolated outward by geant4e using μ hypothesis

- swim each track through KLM with Kalman fitting to matching hits and track adjustment
- compare measured vs extrapolated range and amount of transverse scattering to distinguish muon from any other hypothesis

KLM μ Identification Performance

as a function of momentum (in the barrel region only)

KLM μ Identification Performance

as a function of polar angle

(Neutral) K-long leaves no hits along its path in VXD, CDC, TOP, ...

K-longs suffer strong interaction with ECL nuclei \Rightarrow hadronic shower without a matching CDC track

... or K-longs suffer strong interaction with KLM iron nuclei \Rightarrow hadronic shower without a matching CDC track

... or K-longs suffer strong interaction with KLM iron nuclei \Rightarrow hadronic shower without a matching CDC track

- klongID uses a fast BDT from the basf2 MVA package
- Uses input from (KLM-only) and (KLM+ECL) clusters
- Produces the official list of K_L candidates

BDT inputs from the KLM:

- ✓ # of KLM layers in cluster
- ✓ layer # of first layer in cluster
- ✓ angular position w.r.t. IP of cluster centroid
- ✓ 3D distance of nearest track to cluster centroid
- (+ other less useful measures)

Caution: BDT must be trained with similar-topology sample (particularly considering # of tracks in event)

• two of the useful BDT inputs (MC, truth-matched):

31

angular position is an input – resolution is decent

32

- 3D distance between K_L-candidate cluster and nearest [extrapolated] CDC track
- calculated during muID track extrapolation

 3D distance between K_L-candidate cluster and nearest [extrapolated] CDC track is very small for "clusters" made by muon tracks

• detection efficiency is good for high-momentum K_L 's from $e^+ e^- \rightarrow \phi[K_L K_S] \gamma$

Signal MC

DATA

- Require KLM cluster with 2 layers
- Require ECL cluster with E>0.4GeV and ECLclusterPulseShapeDiscriminationMVA<0.4
- Trend vs. p is due to angular coverage and amount of material

• detection efficiency is worse for low-momentum K_L 's

- mean # of layers is correlated with K_L momentum •
- large **spread** \Rightarrow momentum resolution is poor
- only the K_L direction (from IP) is measured

KLM K_L identification: Training & Test

- Use a trained Boosted Decision Tree to distinguish K_L meson from background
- BDT output depends on the event topology
- No universal training sample works for all event topologies

Signal efficiency

Summary

- ✓ Belle II's KLM (K_L—Muon detector) identifies muons and K-long mesons based on their unique signatures in the KLM, combined with info from inner detectors
- ✓ Muons leave long clean tracks in KLM that match with extrapolation of CDC/VXD tracks
 - confluence.desy.de/display/BI/Lepton+ID+Performance
- ✓ K-long mesons deposit a cluster of hits in KLM (and perhaps ECL first) without a matching CDC/VXD track
 - confluence.desy.de/display/BI/Neutrals+Performance