

$B \rightarrow \tau \nu$ Branching Ratio with Hadronic FEI

Michele Aversano² - Guglielmo De Nardo¹ - Giovanni Gaudino³ - Toru Iijima² - Mario Merola¹

¹INFN Napoli – Università di Napoli Federico II ²Graduate School of Science, Nagoya University ³INFN Napoli – Scuola Superiore Meridionale - Università di Napoli Federico II

Physics Week in Valencia – Nov 29th 2022

Scuola Superiore Meridionale

tituto Nazionale di Fisica Nuclea Sezione di Napoli

$B \rightarrow \tau \nu$ decay with Hadronic FEI

- 0 Extra Tracks (from IP)
- Extra Energy in ECL must be 0 in signal events and larger in background.

 $B^{+} \begin{cases} \overline{b} & H^{+} & \tau^{+} \\ & W^{+} & \\ d & & \nu \end{cases}$ $\mathcal{BR}(B \to \ell \nu) = \frac{G_{F}^{2} m_{B} m_{\ell}^{2}}{8\pi} \left[1 - \frac{m_{\ell}^{2}}{m_{B}^{2}} \right] f_{B}^{2} |V_{ub}|^{2} \tau_{B} \alpha \beta$

Very clean theoretically, hard experimentally Standard Model is helicity suppressed

- 1 track with PID request $(e, \mu \text{ or } \pi)$ with p > 0.4 GeV
- π^0 for $\tau \to \rho \nu \to \pi \pi^0 \nu$ decay

Dataset: 189/fb on res – 14/fb off res – 1000/fb MC14ri

Analysis workflow

We choose the best candidate with respect to the tag probability and divide the sample in 4 channels (one for each τ decay);

The $q\overline{q}$ MC background is

- 1. Reweighted with a BDT-weight
- 2. Normalized to off peak yield

The $B\overline{B}$ background is normalized with the FEI Calibration factors.

Taken from here

In order to reject the $q\overline{q}$ background, a BDT-qq has been trained and the following cuts have been applied:

- $M_{bc} > 5.27 \,\,{
 m GeV}$
- R2 < 0.4

Analysis workflow

We choose the best candidate with respect to the tag probability and divide the sample in 4 channels (one for each τ decay);

The $q\overline{q}$ MC background is

- 1. Reweighted with a BDT-weight
- 2. Normalized to off peak yield

The $B\overline{B}$ background is normalized with the FEI Calibration factors.

Taken from here

In order to reject the $q\overline{q}$ background, a BDT-qq has been trained and the following cuts have been applied:

- $M_{bc} > 5.27 \,\,{
 m GeV}$
- R2 < 0.4
- BDT output < 0.5

We performed a fit to data in ΔE distribution to normalize the $B\overline{B}$ component in the E_{ECL} sideband (more in next slides).

Finally, the cuts have been optimized for the best relative uncertainty in a 4 channel simultaneous fit to E_{ECL} .

Analysis workflow

We choose the best candidate with respect to the tag probability and divide the sample in 4 channels (one for each τ decay);

The $q \overline{q}$ MC background is

- 1. Reweighted with a BDT-weight
- 2. Normalized to off peak yield

The $B\overline{B}$ background is normalized with the FEI Calibration factors.

Taken from here

In order to reject the $q\overline{q}$ background, a BDT-qq has been trained and the following cuts have been applied:

- $M_{bc} > 5.27 \,\,{
 m GeV}$
- R2 < 0.4
- BDT output < 0.5

We performed a fit to data in ΔE distribution to normalize the $B\overline{B}$ component in the E_{ECL} sideband (more in next slides).

Finally, the cuts have been optimized for the best relative uncertainty in a 4 channel simultaneous fit to E_{ECL} .

The ΔE distribution

The ΔE distribution, after a cut at 0.5 on the Continuum Suppression BDT output, looks like this and we tried to fit the MC on data to find a personal calibration value.

The ΔE distribution

The ΔE distribution, after a cut at 0.5 on the Continuum Suppression BDT output, looks like this and we tried to fit the MC on data to find a personal calibration value.

Electron channel

The ΔE distribution

The ΔE distribution, after a cut at 0.5 on the Continuum Suppression BDT output, looks like this and we tried to fit the MC on data to find a personal calibration value.

Results and conclusions

We obtained these values:

au ightarrow	Tag Prob >	
	10 ⁻³	10 ⁻²
ενν	1.15 ± 0.02	1.19 ± 0.02
μνν	1.16 ± 0.02	1.17 ± 0.02
πν	1.35 ± 0.04	1.42 ± 0.07
ρν	1.39 ± 0.04	1.73 ± 0.06

Checks and questions

- 1. Should we also apply the scaling factor to signal MC?
- 2. The scaling factor changes in the different channels and in the different Tag Probability cuts: has this behaviour a physical explaination?

Backup slides

Best E_{ECL} distributions: leptons

 $\tau \rightarrow e \nu \nu$

Best E_{ECL} distributions: leptons

 $\tau \rightarrow \pi \nu$

Sensitivity study on Branching Ratio measurement

$$\mathcal{L}_{k} = \frac{e^{-(n_{s,k}+n_{b,k})}}{N_{k}!} \prod_{i=1}^{N_{k}} \left\{ n_{s,k} \mathcal{P}_{k}^{s}(E_{i,k}) + n_{b,k} \mathcal{P}_{k}^{b}(E_{i,k}) \right\}$$

$$n_{s,k} = 2L_{\text{int}}\sigma_{B^{+}B^{-}} \varepsilon_{k} \mathcal{BR}(B \to \tau \nu) = 2L_{\text{int}}\sigma_{B^{+}B^{-}} \frac{N^{\text{reco}}(\tau \to k)}{N^{\text{gen}}(B \to \tau \nu)} \mathcal{BR}(B \to \tau \nu)$$

$$\frac{\tau \to P_{min}(\text{GeV})}{0.4} \quad \frac{\text{TagProb}}{0.01} \quad \frac{E_{miss}(\text{GeV})}{2.5} \quad \frac{BDT}{0.5} \quad \frac{1}{\mu\nu} \quad 0.4 \quad 0.01 \quad 2.5 \quad 0.5 \quad$$

Optimal cut configuration by minimizing relative uncertanty on the Branching Ratio with TOY MC The fit will be performed on «the best» E_{ECL} distribution: that is the one that gives the best relative error $E_{ECL} = \frac{100}{100010759 \pm 0.000}$

Branching Ratio prediction in a simultaneous fit @ 364 /fb $BR = 1.08 \pm 0.29$ Relative Error = 0.2677

Reconstruction and preselections

- FEI Hadronic for B_{tag} with TagProb > 0.001
- $B_{sig} \rightarrow \tau \nu \rightarrow$
 - 1. $\tau \rightarrow e$ (Track criteria + PID > 0.9)
 - *2.* $\tau \rightarrow \mu$ (Track criteria + PID > 0.9)
 - *3.* $\tau \rightarrow \pi$ (Track criteria + PID > 0.6 + !e + ! μ)
 - 4. $\tau \rightarrow \pi \pi^0$ (same as π and γ for π^0 criteria) (best ρ mass)
- We choose the candidate with the Best Tag Probability after the signal reconstruction
- Rest of Event requirements
- *1.* **0** Extra Tracks
- 2. Extra neutral clusters with photon criteria

	Track criteria:1. $dr < 0.5 \text{ cm}$ 2. $ dz < 2 \text{ cm}$ 3. ϑ in CDC Acceptance4. $p_{CMS} > 0.1 \text{ GeV}$ 5. $nCDC$ Hits > 20
,	Photon criteria:
	<i>1.</i> $E > 50 \mathrm{MeV}$
7	<i>2.</i> ϑ in ECL Acceptance
y	3. $minC2Tdist > 20$ cm
	4. $ t < 200 ns$
	5. $ t /\sigma_t < 2$

 γ for π^0 criteria: $\pi^0 eff$ 40 list