$B^{0} \rightarrow \tau^{+}\tau^{-}$ with hadronic FEI Optimizing cuts with MVA FBDT EI

Cheolhun Kim (PhD. Student) Hanyang University, Korea

hun4341@hanyang.ac.kr

Motivation: Physics / Theory

Theoretical calculation with the Effective Field Theory (SM prediction)

Beyond the Standard Model (BSM)

Theory		Branching fraction	Free parameters (for Enhancement)	
SM prediction		$(2.22 \pm 0.19) \times 10^{-8}$ (2014)	-	
BSM	2HDM	It can be several orders of	$tan\beta, M_{H^+}$	
	Leptoquark	magnitude higher	$\frac{ \lambda^{33}\lambda^{13^*} }{M_S^2}$	

- Free parameters of BSM models make it possible to expect enhancement in the rare decay modes.
- The study of $B^0 \rightarrow \tau^+ \tau^-$ can help to constraint free parameters of BSM models
- Better Theory!

Workflow

SEOUL, KOREA

Nov.29, 2022 B2PW, Cheolhun Kim

Analysis Strategy

Similar Analyses

Target	Year	Author	Exp.	Paper	Note	Method	MVA (amount of signal MC)	Signal Extracting Variables (#)
$B^0 ightarrow au^+ au^-$	2016	M. Ziegler	Belle	-	BN-1390	Hadronic FR, BDT-based	BDT for Continuum BG (1) BDT for each signal channel (6) 10 M (training) / 5 M (testing) Each channel: 15 M, 90 M in total	<i>E_{ECL}</i> (1)
$B^0 \rightarrow \tau^+ \tau^-$	2006	BaBar Collaboration	BaBar	PRL	-	Hadronic full recon., Cut-based	-	m_{ES} (1) (M_{bc}^{tag} in Belle language)
$B^+ \to K^+ \tau^\pm \ell^\mp$	2022	S. Watanuki	Belle (B1-635)	Submitted to PRL	BN-1576	Hadronic FEI, BDT-based	FBDT for $B\overline{B}$ (4 channels) (4) FBDT for $q\overline{q}$ (4 channels) (4) 5 times 5.2 M, total 26 M	M_{recoil} (1) (= $m_{ au}$)
$B \to X \tau \nu$	2022	H. Junkerkalefeld	Belle II	-	B2N-PH- 2021-042	Hadronic FEI, BDT-based	BDT for $qar q$ vs. $Bar B$ (1)	M^2_{miss}, p^*_ℓ (2)
$B \to X_s \nu \bar{\nu}$	2022	Junewoo Park	Belle II	-	B2N-PH- 2022-028	Hadronic FEI, BDT-based	FBDT for Sig. vs Bkg. (1) Total 140 M	FBDT output (1)
$B^+ \to K^+ \nu \bar{\nu}$	2020	F. Dattola	Belle II (B2-004)	PRL	B2N-PH- 2020-057	Inclusive tagging, BDT-based	Special BDTs for Inclusive tagging: BDT_1 and BDT_2 (2)	kaon p_T , BDT_2 output (2)
$B \to X_c \ell \nu_\ell$	2021	M. Welsch	Belle II (B2-006)	Submitted to PRD	B2N-PH- 2021-002	Hadronic FEI, Cut-based	-	q^2 (1) (= $(p_\ell + p_\nu)^2$ = $(p_B - p_X)^2$)
$B^0 \to \ell^{\pm} \tau^{\mp}$	2020	Kyungho Kim	Belle	PhD. Thesis	BN-1531	SL FEI, TMVA MLP	MLP for each signal channel (4) 2 M (training) / 18 M (Testing) Each channel: 20 M, 80 M in total	p_ℓ^* (1)
This Analysis VS.								

$B^0 \to \tau^+ \tau^-$	-	Cheolhun Kim	Belle II	-	-	Hadronic FEI, BDT-based	BDT for Continuum BG (1) ? BDT for each signal channel (6) ?	<i>E_{ECL}</i> (1) ?

Nov.29, 2022 B2PW, Cheolhun Kim

3 /7

MVA: Should be decided

- How many BDTs?
 - Case 1: 1 BDT
 - Signal MC vs. Background MC (1 BDT)
 - Case 2: 6 BDTs
 - Signal MC (6 sub-decay channels) vs. Background MC (6 BDTs)
 - Case 3: 2 BDTs
 - Signal MC vs. Continuum MC (1 BDT)
 - Signal MC vs. Generic MC (1 BDT)
 - Case 4: 7 BDTs
 - Signal MC vs. Continuum MC (1 BDT)
 - Signal MC (6 sub-decay channels) vs. Generic MC (6 BDTs)
 - Case 5: 12 BDTs
 - Signal MC (6 sub-decay channels) vs. Continuum MC (6 BDT)
 - Signal MC (6 sub-decay channels) vs. Generic MC (6 BDTs)
 - etc.
- How many samples are for each BDTs?
- BASF2 Internal MVA package vs. External package
 - ex) BASF2 Internal MVA package FBDT option vs. Thomas Keck's external FBDT

Name	τ decay modes
e^+e^-	$\tau \to e \nu_e \nu_\tau, \tau \to e \nu_e \nu_\tau$
$e^{\pm}\mu^{\mp}$	$\tau \to e \nu_e \nu_\tau, \tau \to \mu \nu_\mu \nu_\tau$
$e^{\pm}\pi^{\mp}$	$\tau \to e \nu_e \nu_\tau, \tau \to \pi \nu_\tau$
$\mu^+\mu^-$	$\tau \to \mu \nu_{\mu} \nu_{\tau}, \tau \to \mu \nu_{\mu} \nu_{\tau}$
$\mu^{\pm}\pi^{\mp}$	$\tau \to \mu \nu_{\mu} \nu_{\tau}, \tau \to \pi \nu_{\tau}$
$\pi^+\pi^-$	$\tau \to \pi \nu_{\tau}, \ \tau \to \pi \nu_{\tau}$

 $B^0 \rightarrow \tau^+ \tau^-$ sub-decay channels

MVA: My first trial

- How many BDTs?
 - Case 1: 1 BDT
 - Signal MC vs. Background MC (1 BDT)
 - Case 2: 6 BDTs
 - Signal MC (6 sub-decay channels) vs. Background MC (6 BDTs)
 - Case 3: 2 BDTs
 - Signal MC vs. Continuum MC (1 BDT)
 - Signal MC vs. Generic MC (1 BDT)
 - Case 4: 7 BDTs
 - Signal MC vs. Continuum MC (1 BDT)
 - Signal MC (6 sub-decay channels) vs. Generic MC (6 BDTs)
 - Case 5: 12 BDTs
 - Signal MC (6 sub-decay channels) vs. Continuum MC (6 BDT)
 - Signal MC (6 sub-decay channels) vs. Generic MC (6 BDTs)
- How many samples are for each BDTs?
 - MC14 (Train : Test = 5 : 5)
 - Signal MC: 8 M / 8 M
 - Generic MC: **450 fb**⁻¹ / **450 fb**⁻¹
 - Continuum MC: 500 fb⁻¹ / 500 fb⁻¹
- BASF2 Internal MVA package vs. External package
 - ex) BASF2 Internal MVA package FBDT option vs. Thomas Keck's external FBDT

Signal (MC14)
$B^0 \rightarrow \tau \tau$, 20 M (0.2 / 0.8)
BGx0: 4 M / BGx1: 16 M
⇒ 16 M (hadronic FEI skimmed)
Background (MC14)
X Skim: SkimM14ri ax1
—
(hadronic FEI skimmed)
(hadronic FEI skimmed) Generic
(hadronic FEI skimmed) Generic $B^0 \overline{B}^0$ (mixed): ~ 900 fb ⁻¹

u,d,s,c (each): ~ 1000 fb⁻¹

MC Sample Information

Continuum

- etc.

MVA: Status

- [Done] Testing Code with a small amount of MC sample
 - [Done] BASF2 Internal MVA FBDT
 - [Done] Thomas Keck's External MVA FBDT

- [Ongoing] For all MC sample
 - [Done] gbasf2 test
 - The first trial (previous slide)
 - A job submitting script
 - Plot result
 - Testing GridSearch for determining Hyper Parameters

Plan

- Complete the *first trial*
 - Signal MC vs. Background MC (1 BDT)
- Further trials
 - Decide BDT strategy
- Decide the amount of *MC15 signal sample* for production
 - Ask production & FEI skim (WG1 DP/Skim Liaison)
 - ex) 20 M for each 6 sub-decay modes (Total 120 M)?
 - ex) 10 M for training / 10 M for testing (5:5)
 - ex) 16 M for training / 4 M for testing (8:2)
- Decide a signal extracting variable
 - ex) A variable (or variables) shows the best separating power
 - E_{ECL} ?

Name	τ decay modes
e^+e^-	$\tau \to e \nu_e \nu_\tau, \tau \to e \nu_e \nu_\tau$
$e^{\pm}\mu^{\mp}$	$\tau \to e \nu_e \nu_\tau, \tau \to \mu \nu_\mu \nu_\tau$
$e^{\pm}\pi^{\mp}$	$\tau \to e \nu_e \nu_\tau, \tau \to \pi \nu_\tau$
$\mu^+\mu^-$	$\tau \to \mu \nu_{\mu} \nu_{\tau}, \tau \to \mu \nu_{\mu} \nu_{\tau}$
$\mu^{\pm}\pi^{\mp}$	$\tau \to \mu \nu_{\mu} \nu_{\tau}, \tau \to \pi \nu_{\tau}$
$\pi^+\pi^-$	$\tau \to \pi \nu_{\tau}, \tau \to \pi \nu_{\tau}$

 $B^0 \rightarrow \tau^+ \tau^-$ sub-decay channels

Backup

Backup

$B^0 \rightarrow ll$ Branching fraction: SM prediction and measurement

	SM prodiction	Measurement				
	Sivi prediction	Detector	Upper Limit	Measurement		
$B^0 \rightarrow e^+ e^-$	$(2.48 \pm 0.21) \times 10^{-15}$ [1] (2014)	LHCb	2.5×10 ⁻⁹ [2] (2020) (90 % CL) 3.0×10 ⁻⁹ [2] (2020) (95 % CL)	-		
$B^0 \rightarrow \mu^+ \mu^-$	$(1.06 \pm 0.00) \times 10^{-10}$ [1] (2014)	ATLAS	2.1×10 ⁻¹⁰ [3] (2019) (95 % CL)	$(-0.19 \pm 0.16) \times 10^{-9}$ [3] (2019)		
	$(1.00 \pm 0.09) \times 10^{-1}$ [1] (2014)	LHCb	3.4×10 ⁻¹⁰ [4] (2017) (95 % CL)	$(0.15^{+0.12}_{-0.10}{}^{+0.02}_{-0.01}) \times 10^{-9}$ [4] (2017)		
$B^0 o au^+ au^-$		LHCb	1.6×10 ⁻³ [5] (2017) (90 % CL) 2.1×10 ⁻³ [5] (2017) (95 % CL)	-		
	?!! (2.22 ± 0.19)×10 ⁻⁸ [1] (2014)	Belle (Not published, Expired, Not official)	-	?!! (4.39 ^{+0.80} ₀₈₃ ± 0.45)×10 ⁻³ [6] (2016)		
		BABAR	4.1×10 ⁻³ [7] (2006) (90 % CL)	-		

Table. Recent & Best values of Branching fraction $B^0 \rightarrow \ell \ell$

[1] Christoph Bobeth et al., " $B_{s,d} \rightarrow l^+ l^-$ in the Standard Model with Reduced Theoretical Uncertainty", PRL (2014)

[2] R. Aaij et al., "Search for Rare Decay $B_s^0 \rightarrow e^+e^-$ and $B^0 \rightarrow e^+e^-$ ", LHCb Collaboration, PRL (2020)

[3] M. Aaboud et al., "Study of the rare decays of B_s^0 and B^0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector", ATLAS collaboration, JHEP (2019)

[4] R. Aaij et al., "Measurement of the $B_s^0 \rightarrow \mu^+\mu^-$ Branching Fraction and Effective Lifetime and Search for $B^0 \rightarrow \mu^+\mu^-$ Decays", LHCb Collaboration (2017)

[5] R. Aaij et al, "Search for the Decays $B_s^0 \rightarrow \tau^+ \tau^-$ and $B^0 \rightarrow \tau^+ \tau^-$ ", LHCb collaboration, PRL (2017)

[6] M. Ziegler, "Search for the rare decay $B^0 \rightarrow \tau^+ \tau^-$ with Belle", Belle collaboration, Belle Note (BN-1390) (2016)

[7] B. Aubert et al, "Search for the Rare Decay $B^0 \rightarrow \tau^+ \tau^-$ at BABAR", BABAR collaboration, PRL (2006)

[8] A.M. Sirunyan et al., "Measurement of properties of $B_s^0 \rightarrow \mu^+\mu^-$ decays and search for $B^0 \rightarrow \mu^+\mu^-$ with the CMS experiment", CMS collaboration, JHEP (2020)

$B_s^0 \rightarrow ll$ Branching fraction: SM prediction and measurement

	SM prodiction	Measurement				
	Sivi prediction	Detector	Upper Limit	Measurement		
$B_s^0 \to e^+ e^-$	$(8.54 \pm 0.55) \times 10^{-14}$ [1] (2014)	LHCb	9.4×10 ⁻⁹ [2] (2020) (90 % CL) 11.2×10 ⁻⁹ [2] (2020) (95 % CL)	- V		
	V	CMS	-	$(2.9 \pm 0.6 \pm 0.4) \times 10^{-9}$ [8] (2020)		
$B_s^0 \to \mu^+ \mu^-$	$(3.65 \pm 0.23) \times 10^{-9}$ [1] (2014)	ATLAS	-	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$ [3] (2019)		
		LHCb	-	$(3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$ [4] (2017)		
$B^0_s \to \tau^+ \tau^-$	$(7.73 \pm 0.49) \times 10^{-7}$ [1] (2014)	LHCb	5.2×10 ⁻³ [5] (2017) (90 % CL) 6.8×10 ⁻³ [5] (2017) (95 % CL)	-		

Table. Recent & Best values of Branching fraction $B_s^0 \rightarrow \ell \ell$

[1] Christoph Bobeth et al., " $B_{s,d} \rightarrow l^+ l^-$ in the Standard Model with Reduced Theoretical Uncertainty", PRL (2014)

[2] R. Aaij et al., "Search for Rare Decay $B_s^0 \rightarrow e^+e^-$ and $B^0 \rightarrow e^+e^-$ ", LHCb Collaboration, PRL (2020)

[3] M. Aaboud et al., "Study of the rare decays of B_s^0 and B^0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector", ATLAS collaboration, JHEP (2019)

[4] R. Aaij et al., "Measurement of the $B_s^0 \rightarrow \mu^+\mu^-$ Branching Fraction and Effective Lifetime and Search for $B^0 \rightarrow \mu^+\mu^-$ Decays", LHCb Collaboration (2017)

[5] R. Aaij et al, "Search for the Decays $B_s^0 \rightarrow \tau^+ \tau^-$ and $B^0 \rightarrow \tau^+ \tau^-$ ", LHCb collaboration, PRL (2017)

[6] M. Ziegler, "Search for the rare decay $B^0 \rightarrow \tau^+ \tau^-$ with Belle", Belle collaboration, Belle Note (BN-1390) (2016)

[7] B. Aubert et al, "Search for the Rare Decay $B^0 \rightarrow \tau^+ \tau^-$ at BABAR", BABAR collaboration, PRL (2006)

[8] A.M. Sirunyan et al., "Measurement of properties of $B_s^0 \rightarrow \mu^+\mu^-$ decays and search for $B^0 \rightarrow \mu^+\mu^-$ with the CMS experiment", CMS collaboration, JHEP (2020)

BDT Input Variables: Continuum Suppression

#	Variables	#	Variab
1	"R2"	16	"KSFWV
2	"thrustBm"	17	"KSFWV
3	"thrustOm"	18	"KSFWV
4	"cosTBTO"	19	"KSFWV
5	"cosTBz"	20	"KSFWV
6	"KSFWVariables(et)"	21	"KSFWV
7	"KSFWVariables(mm2)"	22	"CleoCo
8	"KSFWVariables(hso00)"	23	"CleoCo
9	"KSFWVariables(hso02)"	24	"CleoCo
10	"KSFWVariables(hso04)"	25	"CleoCo
11	"KSFWVariables(hso10)"	26	"CleoCo
12	"KSFWVariables(hso12)"	27	"CleoCo
13	"KSFWVariables(hso14)"	28	"CleoCo
14	"KSFWVariables(hso20)"	29	"CleoCo
15	"KSFWVariables(hso22)"	30	"CleoCo

les /ariables(hso24)" /ariables(hoo0)" /ariables(hoo1)" /ariables(hoo2)" /ariables(hoo3)" /ariables(hoo4)" oneCS(1)" oneCS(2)" oneCS(3)" oneCS(4)" oneCS(5)" oneCS(6)" oneCS(7)" oneCS(8)" oneCS(9)"

BDT Input Variables: BN-1390 (Belle, $B^0 o au^+ au^-)$

 $\mathbb{X}B^0 \rightarrow \tau^+ \tau^-$, BN-1390, M. Ziegler (2016)

Previous talks

2021

- 2021.09.14. 25th EWP Meeting
 - <u>https://indico.belle2.org/event/5190/#5-b0-tautau</u>
- 2021.12.02. Leptonic Subgroup Meeting
 - https://indico.belle2.org/event/5728/#3-b0-to-tau-tau-analysis-statu

2022

- 2022.01.20. WG1 pre-session, 41st B2GM
 - https://indico.belle2.org/event/6017/#20-b0-to-tau-tau
- 2022.05.31. WG1 pre-session, 42nd B2GM
 - https://indico.belle2.org/event/6930/#sc-2-14-b-tau-tau
- 2022.Aug.04. Leptonic subgroup meeting
 - https://indico.belle2.org/event/7366/#7-b-to-tau-tau-preselection
- 2022.Oct.05. WG1 pre-session, 43rd B2GM
 - https://indico.belle2.org/event/7826/#sc-1-29-b-tau-tau

