

Search for $e^+e^- \rightarrow \eta_b$ (1S) ω at $\sqrt{s} = 10.745$ GeV

Pavel Oskin, Roman Mizuk, Karim Trabelsi (IJCLab) (HSE) (IJCLab)

Motivation

JHEP 10 (2019) 220

 $\frac{\Gamma(\eta_b \ \omega)}{\Gamma(\Upsilon \ \pi^+\pi^-)} \sim 30$

Recently Belle observed a new structure Y(10753) in the e+ e- \rightarrow Y(nS) π + π - (n = 1,2,3) cross section energy dependence.

There is tetraquark interpretation (<u>Chin Phys. C 43 123102 (2019</u>)) of Y(10753) state, which predicts enhancement of the Y(10753) $\rightarrow \eta_b(1S)\omega$ transition:

Observation of e+e $\rightarrow \omega \chi_{bJ}$ (1P) at \sqrt{s} = 10.745 GeV

Strongly enhanced at 10.745 GeV.

arXiv:2208.13189

We search for $e+e- \rightarrow \omega \chi_{h,l}(1P)$ (J = 0), which is not measured due to low BF[$\chi_{h0}(1P) \rightarrow Y(1S)$] = 1.94%

Search for e+e- $\rightarrow \eta_{b}(1S)\omega$ at $\sqrt{s} = 10.745$ GeV

 $\eta_{\rm b}({\rm 1S})$ decays to gluons and does not have reconstructable modes.

We reconstruct only $\omega \to \pi^+\pi^-\pi^0$ and use the recoil mass to identify signal.

$$M_{
m recoil}(\omega) = \sqrt{(\sqrt{s} - E_{\omega}^*)^2 - (p_{\omega}^*)^2}$$

Assuming the cross section of this transition is the same as $\omega \chi_{b1}(1P)$, we expect to have enough sensitivity to see the signal.

Belle II MC study

Baseline selection criteria

- dr <0.3 cm, |dz|<0.5 cm,
- $L_{\pi}/(L_{\pi}+L_{K}) > 0.1$,
- $L_{\pi}/(L_{\pi}+L_{p}) > 0.1$,
- $L_e / (L_\pi + L_e) < 0.9$,
- 'gamma:tight' selection criteria:
 - $E_{lab}(\gamma_1)$, $E_{lab}(\gamma_2)$ >50 MeV for the barrel and forward ECL,
 - $E_{lab}(\gamma_1)$, $E_{lab}(\gamma_2)$ >75 MeV for the backward ECL,
- cluster E9/E21 > 0.8,
- minC2TDist > 15 cm,
- cluster Timing < 50 ns,

After applying the preselections we iteratively optimize this selections by maximizing

$$FoM = \frac{signal}{\sqrt{signal + background}}$$
.

$e^+e^- ightarrow$				
$\eta_b(1S)\omega$	$\chi_{bJ}(1P)\omega$			
$p^*(\pi^0)>$ 260 MeV	$p^*(\pi^0)>$ 150 MeV			
$ M(\gamma\gamma)-M(\pi^0) <$ 12 MeV	$ M(\gamma\gamma)-M(\pi^0) < 11 \; { m MeV}$			
$ M(\pi^+\pi^-\pi^0)-M(\omega) <$ 14 MeV	$ M(\pi^+\pi^-\pi^0)-M(\omega) <$ 14 MeV			
R2 <0.23	R2 <0.31			
r <0.83	r <0.82			
eff = 10.5 %	eff = 8.8 %			

Cut based approach to fake photons suppression

Beam background suppression:

cuts mentioned previously are loose but near to optimal

Fake photons suppression:

MVA based approach to fake photons suppression

Beam background suppression **beamBackgroundSuppression**

- clusterTiming
- clusterPulseShapeDiscriminationMVA
- clusterE
- clusterTheta
- clusterZernikeMVA
- clusterE1E9
- clusterLAT
- clusterSecondMoment

Fake photons suppression hadronicSplitOffSuppression

- clusterPulseShapeDiscriminationMVA
- minC2TDist
- clusterZernikeMVA
- clusterE
- clusterLAT
- clusterE1E9
- clusterSecondMoment

$\pi^{\scriptscriptstyle 0}$ invariant mass and momenta

but what is actually happening???

Sources of the true π^0 background

 $N(\pi^0)$

0.00

0 5 10 15 20 25 30 35 40

How we can suppress BB background?

Multiplicity does not work.

Conclusion

- The baseline strategy for inclusive search for bottomonium transitions with ω meson emission was developed.
- Optimal fake π^0 suppression selections were found (?).
- Do we have not gamma-related, but π^0 related variables to suppress combinatorial π^0 (p*(π^0) and InvM(π^0) are used now)?
- We search for a way to suppress the background events with the real π^0 mostly from BB.
- Does all the fake ω background connected with huge combinatorics due to π^0 or there are other significant sources?
- In case of $\chi_{h,l}(1P)$ the situation is even worse...

Thank you for attention!

Search for $e^+e^- ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{ m GeV}$

Pavel Oskin, Roman Mizuk, Karim Trabelsi 27.10.2022

HSE (Moscow), IJCLab (Orsay)

Image: A matrix

Search for $e^+e^- \rightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s} = 10.751$ GeV

____ 1 / 48

< ≣ ▶

Recently Belle observed a new structure near \sqrt{s} =10.753 GeV in $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n = 1,2,3) cross section energy dependence. JHEP **10**, 220 (2019)

There is tetraquark (diquark-antidiquark) interpretation of this state, which predicts enhancement of $\Upsilon(10753) \rightarrow \eta_b(1S)\omega$ transition.

$$\frac{\Gamma(\eta_b \ \omega)}{\Gamma(\Upsilon \ \pi^+\pi^-)} \sim 30 \tag{1}$$

Z. G. Wang, Chin. Phys. C 43, no.12, 123102 (2019)

Also we search for $e^+e^- \rightarrow \omega \chi_{bJ}(1P)$ (J = 0,1,2) which are found to be enhanced at the scan energies.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Signal MC generation

We use phokhara_evtgen_combination generator to simulate ISR and decay sequence. The CM energy is 10.751 GeV. For detector simulation, we use GEANT4 based package available in release-06-00-03 and beam background samples provided by data production group

Decay vpho 1.0 omega eta_b Enddecay	PHSP;
Decay eta_b 1.0 g g PHOTOS P Enddecay	YTHIA 91;
Decay omega 1.0 pi+ pi- pi0 C Enddecay	MEGA_DALITZ;
Decay pi0 1.0 gamma gamma P Enddecay	HSP;
End	

Decay vpho 1.0 omega chi_b1 PHSP; Enddecay	
Decay chi_b1 0.349 gamma Upsilon H 0.651 g g PYTHIA 9 Enddecay	ELAMP 1. 0. 1. 01. 01. 0.; 1;
Decay omega 1.0 pi+ pi- pi0 OMEGA_DALITZ; Enddecay	
Decay pi0 1.0 gamma gamma PHSP; Enddecay	
End	

Reweighting of the signal MC

In the phokhara_evtgen_combination $\sigma \sim 1/s$. We introduce weights for the events so $\sigma \sim$ line shape of the $\Upsilon(10753)$ resonance with the parameters from JHEP **10**, 220 (2019).

Search for $e^+e^- \rightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s} = 10.751$ GeV

4 / 48

Reweighting of the signal MC

 θ is the angle between the normal to the ω decay plane and the difference of the beam momenta measured in the ω rest frame. Initial distributions in $cos(\theta)$ are uniform at generator level.

Process	Expectation
$e^+e^- ightarrow \eta_b(1S)\omega$	$1 + \cos^2 \theta$
$e^+e^- o \chi_{b0}(1P)\omega$	1 - $\cos^2 heta$
$e^+e^- ightarrow \chi_{b1}(1P)\omega$	$1 + \cos^2\! heta$
$e^+e^- ightarrow \chi_{b2}(1P)\omega$	$1 - \frac{1}{7}\cos^2\theta$

▶ < ∃ >

Selection criteria

We reconstruct only $\omega \to \pi^+ \pi^- \pi^0$ and use the recoil mass $M_{\text{recoil}}(\omega) = \sqrt{(\sqrt{s} - E_{\omega}^*)^2 - (p_{\omega}^*)^2}$ to identify signal.

- dr < 0.3 cm, |dz| < 0.5 cm
- $L_{\pi}/(L_{\pi}+L_{K}) > 0.1$
- $L_{\pi}/(L_{\pi}+L_{p}) > 0.1$
- $L_e/(L_\pi+L_e) < 0.9$
- 'gamma:tight' selection criteria:
 - $E_{lab}(\gamma_1), E_{lab}(\gamma_2) > 50 \text{ MeV}$ for the barrel and forward ECL,
 - $E_{lab}(\gamma_1), E_{lab}(\gamma_2) > 75 \text{ MeV}$ for the backward ECL
- cluster E9/E21 > 0.8,
- cluster Timing < 50,
- minC2TDist > 15,
- 9.2 $<\!M_{
 m recoil}(\omega)$ <9.6 GeV

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

After applying the preselections we iteratively optimize the selections listed below by maximizing the figure of merit $FoM = \frac{signal}{\sqrt{signal+background}}$.

$e^+e^- ightarrow$			
$\eta_b(1S)\omega$	$\chi_{bJ}(1P)\omega$		
$p^*(\pi^0)>$ 260 MeV	$p^*(\pi^0)>$ 150 MeV		
$ {\it M}(\gamma\gamma)-{\it M}(\pi^0) <$ 12 MeV	$ M(\gamma\gamma)-M(\pi^0) <\!\!11\;{ m MeV}$		
$ M(\pi^+\pi^-\pi^0)-M(\omega) <$ 14 MeV	$ M(\pi^+\pi^-\pi^0)-M(\omega) <$ 14 MeV		
R2 <0.23	R2 <0.31		
r <0.83	r <0.82		
eff = 10.5~%	eff = 8.8 %		

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=$ 10.751 GeV

イロト イヨト イヨト イヨト

 $|\cos(\theta_{thrust})|$ no cut $\rightarrow R2 < 0.31$ increases FoM by 5 % for the $\chi_{b0}(1P)$ channel. $|\cos(\theta_{thrust})| < 0.76 \rightarrow R2 < 0.23$ increases FoM by 7 % for the $\eta_b(1S)$ channel.

Image: A mathematical states and a mathem

Also the number of tracks and neutral pions was checked for the signal MC, generic MC and $M_{\text{recoil}}(\omega)$ sidebands in data. No significant difference was found.

イロト イヨト イヨト イヨト

Combinatorial ω background in signal MC

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$

10 / 48

Fit to signal MC

We use a sum of a Gaussian and a right-sided Crystal Ball function. χ_{b1} / χ_{b2} yields ratio is fixed according to exclusive measurements.

Search for $e^+e^- \rightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s} = 10.751$ GeV

Parameterization of the background

We use 20% (10 fb^{-1}) of the generic MC sample generated at						
$\sqrt{s} = 10.751 \text{ GeV}$						
Polynomial order	χ^2	p-value		Polynomial order	χ^2	p-value
2	390	0.61	-	5	178.6	0.22
3	362	0.90		6	167.3	0.41
4	361	0.90	-	7	165.7	0.43
5	361	0.89	-	8	165.6	0.41
6	361	0.88		9	164	0.42

Parameterization of the background

The results are consistent with the ones obtained with the method Umberto proposed.

Polynomial order	χ^2	p-value		Polynomial order	χ^2	p-value
2	390	0.61	_	5	178.6	0.22
3	362	0.90		6	167.3	0.41
4	361	0.90		7	165.7	0.43
5	361	0.89	_	8	165.6	0.41
6	361	0.88		9	164	0.42

Parameterization of the background

14 / 48

Sensitivity and cross checks

Assuming the $e^+e^- \rightarrow \chi_{b0}(1P)\omega$ and $e^+e^- \rightarrow \eta_b(1S)\omega$ cross sections are the same as the $e^+e^- \rightarrow \chi_{b1}(1P)\omega$ cross section, we calculate expected yield for inclusive reconstruction as:

$$N_{\rm incl} = \frac{\sigma^B \times \times \varepsilon_{\rm partial} \times [\omega \to \pi^+ \pi^- \pi^0] \times [\pi^0 \to \gamma \gamma] \times (1 + \delta_{\rm ISR})}{|1 - \Pi|^2},$$
(2)

Process	Expected yield	
$e^+e^- o \eta_b(1S)\omega$	$(2.25 \pm 0.47) \cdot 10^3$	
$e^+e^- o \chi_{b0}(1P)\omega$	$(1.89 \pm 0.39) {\cdot} 10^3$	
$e^+e^- o \chi_{b1}(1P)\omega$	$(2.17 \pm 0.45) \cdot 10^3$	
$e^+e^- ightarrow \chi_{b2}(1P)\omega$	$(1.60 \pm 0.64) \cdot 10^3$	

Search for e^+e^- ightarrow $\eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=$ 10.751 GeV

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Toy MC studies

 χ_{b12} expected yield: $(3.77 \pm 1.09) \cdot 10^3$ We find a bias of $(2.70 \pm 0.14) \cdot 10^3$

and RMS (expected statistical uncertainty) of (4.30 \pm 0.10) \cdot 10^3.

We fix the χ_{b12} yield to the expectations to give the best possible sensitivity for the χ_{b0} , which is not yet measured.

Toy MC studies

Process	Input yield	Fit bias	RMS
$e^+e^- o \eta_b(1S)\omega$	$2.25 \cdot 10^3$	$(-0.018\pm0.014)\cdot10^3$	$(0.45\pm 0.01)\cdot 10^3$
$e^+e^- ightarrow \chi_{b0}(1P)\omega$	$1.89\cdot 10^3$	$(-0.30\pm0.04)\cdot10^3$	$(1.39 \pm 0.03) \cdot 10^3$

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=$ 10.751 GeV

ヘロト ヘロト ヘヨト ヘヨト

Toy MC studies

Background shape becomes complicated only close to the upper boundary. To check the dependence of the bias on the fit range, we vary upper boundary of the fit range.

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$

Gsim input-output test

We mix signal and generic MC to obtain the check the input-output consistency.

Process	Input yield	Output yield	Deviation
$e^+e^- o \eta_b(1S)\omega$	$2.25 \cdot 10^{3}$	$(1.52\pm 0.46)\cdot 10^3$	1.6 σ
$e^+e^- o \chi_{b0}(1P)\omega$	$1.89\cdot 10^3$	$(-0.04 \pm 1.46) \cdot 10^3$	1σ

Search for $e^+e^-
ightarrow \eta_{b}(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$

19 / 48

The difference between π^0 masses in generic MC and data is -1.8 MeV for both channels. So we shift the π^0 mass cut in data by this value.

 $\eta_b(1S)$

 $\chi_{b0}(1P)$

$$R_{\rm MC}^{\rm Data} = \frac{\varepsilon_{\rm Data}(\pi^0)}{\varepsilon_{\rm MC}(\pi^0)} = \sqrt{\frac{N_{\rm Data}(\eta \to \pi^0 \pi^0 \pi^0 \pi^0)/N_{\rm MC}(\eta \to \pi^0 \pi^0 \pi^0 \pi^0)}{N_{\rm Data}(\eta \to \pi^+ \pi^- \pi^0)/N_{\rm MC}(\eta \to \pi^+ \pi^- \pi^0)} \cdot R^2(\pi^{\pm})}, (3)$$

where $R(\pi^{\pm})$ is the Data-MC ratio of the track reconstruction efficiency.

$$R_{
m MC}^{
m Data} = rac{arepsilon_{
m Data}(\pi^0)}{arepsilon_{
m MC}(\pi^0)} = \sqrt{rac{arepsilon_{
m Data}(2\pi^0)}{arepsilon_{
m MC}(2\pi^0)}} = \sqrt{rac{N_{
m Data}(\eta
ightarrow \pi^0 \pi^0 \pi^0)/N_{
m MC}(\eta
ightarrow \pi^0 \pi^0 \pi^0)}{N_{
m Data}(\eta
ightarrow \gamma)/N_{
m MC}(\eta
ightarrow \gamma \gamma)}}(4)$$

Search for $e^+e^-
ightarrow \overline{\eta_b}(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$

イロト イヨト イヨト イヨト

For two π^0/π^{\pm} , we require momentum in the laboratory frame to be $p_{\text{lab}}(\pi) < 1.2 \text{ GeV} / 0.6 \text{ GeV}$ to reproduce cut-offs in the $\eta_b(1S) / \chi_{bJ}(1P)$ signal MC.

Then the requirement on the η -momentum in the laboratory frame $p_{\text{lab}}(\eta) < 2.5 \text{ GeV}$ is applied to reproduce the $p_{\text{lab}}(\pi^0 \pi^0 \pi^0)$ spectrum in the $\chi_{bJ}(1P)$ channel.

▶ ★ 臣 ▶ ...

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=$ 10.751 GeV

23 / 48

With $\eta \to \pi^0 \pi^0 \pi^0$ and $\eta \to \pi^+ \pi^- \pi^0$ channels: $R_{\rm MC}^{\rm Data} = \frac{\varepsilon_{\rm Data}(\pi^0)}{\varepsilon_{\rm MC}(\pi^0)} = 0.947 \pm 0.022 \pm 0.026 \quad \text{for } \eta_b(1S), (5)$ $R_{\rm MC}^{\rm Data} = \frac{\varepsilon_{\rm Data}(\pi^0)}{\varepsilon_{\rm MC}(\pi^0)} = 0.951 \pm 0.038 \pm 0.061 \quad \text{for } \chi_{bJ}(1P), (6)$ where the first uncertainty is statistical, and the second is systematic. The systematic uncertainties of the π^0 reconstruction are 3.6% and 7.5% for $\eta_b(1S)$ and $\chi_{bJ}(1P)$ selections, respectively.

With $\eta \to \pi^0 \pi^0 \pi^0$ and $\eta \to \gamma \gamma$ channels: $R_{\rm MC}^{\rm Data} = \frac{\varepsilon_{\rm Data}(\pi^0)}{\varepsilon_{\rm MC}(\pi^0)} = 0.924 \pm 0.021 \pm 0.027$ for $\eta_b(1S)$, (7) $R_{\rm MC}^{\rm Data} = \frac{\varepsilon_{\rm Data}(\pi^0)}{\varepsilon_{\rm MC}(\pi^0)} = 0.937 \pm 0.036 \pm 0.058$ for $\chi_{bJ}(1P)$, (8) where the first uncertainty is statistical, and the second is systematic. The systematic uncertainties of the π^0 reconstruction are 3.7% and 7.3% for $\eta_b(1S)$ and $\chi_{bJ}(1P)$ selections, respectively.

Other sources of the systematic uncertainty

Reconstruction efficiency uncertainty

- Charged track reconstruction uncertainty. For the low momentum pions, we use the values obtained in B2N-PH-2022-034 with slow pions from $\bar{B}^0 \rightarrow [D^{*+} \rightarrow D^0 \pi^+_{slow}] \pi^-$ process. For the mid to high momentum pions, we use the values obtained in Ref. B2N-PH-2020-006 with $e^+e^- \rightarrow \tau^+\tau^-$ processes. Systematic uncertainties are 1.6% and 1.9% per track for the $\eta_b(1S)$ and $\chi_{bJ}(1P)$ channels, respectively.
- Particle identification uncertainty. To estimate π^{\pm} identification uncertainty, we use π^{+} from inclusive $D^{*+} \rightarrow [D \rightarrow K^{-}\pi^{+}\pi^{0}]\pi^{+}$ data sample. The obtained Data-MC ratios of π^{\pm} reconstruction efficiency are 0.971 and 0.968 for $\eta_{b}(1S)$ and $\chi_{bJ}(1P)$ channels, respectively. Systematic uncertainties corresponding to charged pion identification are 2.3% and 2.6% per pion for the $\eta_{b}(1S)$ and $\chi_{bJ}(1P)$ channels, respectively.

Why tracking and PID uncertainties are so high?

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$

26 / 48

Other sources of the systematic uncertainty

Signal parametrization uncertainty

- Mass and width. To estimate systematic uncertainties due to the mass and width errors, we vary $\eta_b(1S)$ and $\chi_{b0}(1P)$ masses and widths within one standard deviation.
- ISR tail. The shape of the ISR tail depends on the $\eta_b/\chi_{b0}\omega$ production mechanism. Instead of a resonant production via $\Upsilon(10753)$, we consider the energy independent $e^+e^- \rightarrow \eta_b/\chi_{b0}\omega$ cross sections to estimate the uncertainty due to the ISR tail parameterization.

Background parameterization uncertainty

- Fit range. We vary upper and lower limit of the fit range by 100 MeV for the $\eta_b(1S)$ channel and 50 MeV for the $\chi_{b0}(1P)$ channel to estimate the uncertainty due to the fit range.
- Polynomial order. We increase or decrease the polynomial order by one to estimate the uncertainty due to the polynomial order.

Summary

- The reconstruction method was developed.
- The Data-MC discrepancies and systematic uncertainties were studied. We expect background parameterization to be the main source of systematic uncertainty.
- The toy MC studies and input-output studies provided us with an understanding of the fit procedure.
- We expect the 1-2 σ signal for the $e^+e^- \rightarrow \chi_{bJ}\omega$ (J = 1,2) channels. But it is not clear for χ_{b0} channel, which was not found exclusively due to low BF[$\chi_{b0} \rightarrow \Upsilon(1S)\gamma$]~2%. We could see the signal only if J = 0 is enhanced compared to J = 1,2.
- For $\eta_b(1S)$, we expect >3 σ signal even if the enhancement on the same level as for $\chi_{bJ}(1P)$ (tetraquark model predicts even larger enhancement).

イロト 不同 とうほう 不同 とう

BACKUP

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$

29 / 48

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

What is r?

r is a normalized distance to the Dalitz plot (DP) center; r varies from 0 to 1, the points at the DP boundary have r = 1. Signal events are mostly concentrated in the centre of DP.

30 / 48

Optimization of impact parameters requirements $\eta_b(1S)$

Left: FoM Right: signal (yellow), background (blue).

Search for $e^+e^- \rightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s} = 10.751$ GeV

Optimization of PID requirements $\eta_b(1S)$

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=$ 10.751 GeV

32 / 48

Optimization of cluster parameters requirements $\eta_b(1S)$

* 注入 * 注入

Search for e^+e^- ightarrow $\eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=$ 10.751 GeV

Optimization of r requirement $\eta_b(1S)$

Left: FoM Right: signal (yellow), background (blue).

Optimization of $p^*(\pi^0)$ requirement $\eta_b(1S)$

Left: FoM Right: signal (yellow), background (blue).

≣ ► < ≣ ►

Optimization of R2 requirement $\eta_b(1S)$

Left: FoM Right: signal (yellow), background (blue).

▶ < Ξ >

Optimization of $|M(\gamma\gamma) - M(\pi^0)|$ requirement $\eta_b(1S)$

Left: FoM Right: signal (yellow), background (blue).

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$

37 / 48

★ E ► < E ►</p>

Optimization of $|M(\pi^+\pi^-\pi^0) - M(\omega)|$ requirement $\eta_b(1S)$

Left: FoM Right: signal (yellow), background (blue).

★ E ► < E ►</p>

Optimization of impact parameters requirements $\chi_{b0}(1P)$

Left: FoM

Right: signal (yellow), background (blue).

Search for $e^+e^- \rightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s} = 10.751$ GeV

Optimization of PID requirements $\chi_{b0}(1P)$

Search for e^+e^- ightarrow $\eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=$ 10.751 GeV

40 / 48

Optimization of cluster parameters requirements $\chi_{b0}(1P)$

▲ 臣 ▶ | ▲ 臣 ▶ |

Search for e^+e^- ightarrow $\eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=$ 10.751 GeV

Optimization of r requirement $\chi_{b0}(1P)$

Left: FoM Right: signal (yellow), background (blue).

42 / 48

< Ξ.

Optimization of $p^*(\pi^0)$ requirement $\chi_{b0}(1P)$

Left: FoM Right: signal (yellow), background (blue).

-> -< ≣ >

Optimization of R2 requirement $\chi_{b0}(1P)$

Left: FoM Right: signal (yellow), background (blue).

▶ < ∃ >

Optimization of $|M(\gamma\gamma) - M(\pi^0)|$ requirement $\chi_{b0}(1P)$

Left: FoM Right: signal (yellow), background (blue).

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$

45 / 48

三 ト - モ ト

Optimization of $|M(\pi^+\pi^-\pi^0) - M(\omega)|$ requirement $\chi_{b0}(1P)$

Left: FoM Right: signal (yellow), background (blue).

46 / 48

(E) < E)
 </p>

Data-MC discrepancy in the event shape variables

ヘロン 人間 とくほど 不同と

Signal MC generation

We think that the correct decay of χ_{b1} will be to two gluons with one of them off mass shell; this is not forbidden by the Landau theorem.

Since now we use the event shape variables (R2) in the selection the difference in efficiency compared to the default table is 31.5%. We will include this value in the systematic uncertainty.

Decay chi_b0 0.0192 gamma Upsilon HELAMP 1.0.1.0.; #but using BY(22-source action) 0.9808 g g PYTHIA 91; Endecay	est values from BBR 2014,
Decay chi bi Openan Upsilon HELANP 1. 0. 1. 01. 0. 0.390 parma Upsilon HELANP 1. 0. 1. 01. 0. on SBR 2014. using B(Y25-spame chil) 0. 0.1027 0.15275 u anti-u PYTHIA 91; 0.15275 stanti-u PYTHIA 91; 0.1527 0.15275 anti-u PYTHIA 91; 0.15275 0.15275 anti-c PYTHIA 91; 0.15275 0.15275 c anti-c PYTHIA 91;	-1. 0.; #best values fr
Decay chl_b2 0.187 gamma Upsilon HELAMP 1. 0. 1.7320508 0. 2 4097 0. 1.7320508 0. 1. 0.; #best values from BBR 2014, u 0.813 g PYTHIA 91; Endecay	.4494897 0. 2.449 using B(Y25->gamma chib)

Search for $e^+e^-
ightarrow \eta_b(1S)/\chi_{bJ}(1P)\omega$ at $\sqrt{s}=10.751~{
m GeV}$