

$B{\rightarrow}\,\eta^{'}\,K_{_{S}}$ analysis

Belle II Physics week 29/11/2022

Stefano Lacaprara, <u>Jakub Kandra</u> INFN Padova

Introduction

• Time dependent CP violation can be measured using formula:

$$\mathcal{P}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left(1 + q \cdot \left[\mathcal{S}_{\eta'K^0}\sin(\Delta m_d\Delta t) + \mathcal{A}_{\eta'K^0}\cos(\Delta m_d\Delta t)\right]\right)$$

$$\Delta t = t_{\text{rec}} - t_{\text{tag}} \xrightarrow{B^0} \text{lifetime} \quad \text{tag for B mesons (+1 or -1)} \quad \text{mixing frequency}$$

- Monte Carlo predictions for fitting parameters $S_{\eta'K^0} = -\xi_f \sin 2\phi_1$ and $A_{\eta'K^0} = 0$, but no zero parameter can be described as difference $\Delta S_{\eta'K^0} = \sin 2\phi_1^{\text{eff}} \sin 2\phi_1$
- The difference $\Delta S_{n'K^0}$ can be predicted from several sources:
 - SU(3)F approach limits it to the range [-0.05, 0.09]
 - \circ QCD factorization constrains it to the range [-0.03, 0.03]
 - Other estimations
- Measurement of this difference out of the mentioned ranges could be sign of New Physics
- Previous measurements in BaBar and Belle introduce large statistical uncertainty what motivates to provide more precise measurements Jakub Kandra, INFN Padova

Signal and signal cross feed shapes

- Signal (and signal cross feed) shapes modeling:
 - fBDT_{trans}: Sum of three exponentials
 - m_{bc}: Double gaussian (Crystal ball)
 - ΔE: Double gaussian
 - Δt: Hadronic modeling refitted on our data (how to model signal cross feed?)

Continuum and peaking background shapes

- Continuum (and peaking) background modeling:
 - fBDT_{trans}: Chebyshev with linear and constant and linear degrees (Double exponential)
 - m_{bc}: ArgusBG (shape parameters in back-up)
 - ΔE: Exponential (shape parameters in back-up)
 - Δt resolution: Three gaussian (how to model peaking background?)

Yield fit at 364 fb⁻¹

- The total fitted function is three dimensional (fBDT_{trans} $\times m_{bc} \times \Delta E$) pdf.
 - two number of events (signal and continuum) free floating and two fractions (signal cross feed and peaking) constrained to MC value with sigma equals MC statistical uncertainty
- The MC test with expected yield at current integrated luminosity (expected)
- Then we set toys as 1000 measurements:
 - Generated from total pdf
 - Sampled from datasets

Toys generated from pdfs

Sampled toys from datasets

• Toys demonstrate really stable fit

TD CP Violation fit (continuum + signal only)

- Fit technically working from sampled MC with L_{Data}
 - Some issue in fit component overlays for tag categories (2x normalization of pdf?)
- Warning: very preliminary work
 - Still no SxF and BBbar
 - Still fit in qr∈[0,1]
 - With resolution from first qr bin
 - Yield for signal and continuum are ok
 - A_{CP} = 0.063 +/- 0.065 (input 0)
 - S_{CP} = 0.29 +/- 0.096 (input 0.7)

Backup

Ntuple production

- Steering code is at:
 - <u>https://stash.desy.de/users/lacaprar/repos/etaprime/browse/steering_files</u>
 - Produced (so far) for All Data, MC15ri (qq-bar+taupair 1/ab), and MC15rd (exp20-26 ~700/fb)
 - As well as for signals
 - Channel #1:
 - $B^0 \rightarrow \eta' (\rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-) K_s(\pi^+ \pi^-)$
 - $B^0 \rightarrow \eta' (\rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-) K_s(\pi^0 \pi^0)$
 - $B^+ \rightarrow \eta' (\rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-) K^+$
 - Channel #3:
 - $B^0 \rightarrow \eta' (\rightarrow \rho (\rightarrow \pi^+ \pi^-) \gamma) K_s(\pi^+ \pi^-)$
 - $B^0 \rightarrow \eta' (\rightarrow \rho (\rightarrow \pi^+ \pi^-) \gamma) K_s(\pi^0 \pi^0)$
 - $\bullet \qquad B^{\scriptscriptstyle +} {\rightarrow} \eta^{\scriptscriptstyle \cdot} ({\rightarrow} \rho ({\rightarrow} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}) \gamma) K^{\stackrel{-}{\scriptscriptstyle +}}$
 - Channel #2:
 - $B^0 \rightarrow \eta' (\rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-) K_s(\pi^+ \pi^-)$
 - $B^0 \rightarrow \eta' (\rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-) K_s(\pi^0 \pi^0)$
 - $B^+ \rightarrow \eta' (\rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^-) K^+$

Jakub Kandra, INFN Padova

Selection η ': two channels

$$\eta' o \eta (o \gamma \gamma) \pi^+ \pi^-$$

- Gamma:loose
 - E_v>150 MeV
 - \circ 0.5 < M_{yy} < 0.57 GeV/c ²
- Pi:all
 - opposite charge

$$\eta' o
ho (o \pi^+ \pi^-) \gamma$$

- Gamma:loose
 - E_v>150 MeV
 - \circ cos $\theta_{v} > -0.64$
 - \circ No pi0 veto: losing too much signal
- Pi:loose
 - \circ 0.47 < M _{n+ n-} < 1.07 GeV/c²
- $0.92 < M_{\eta} < 1.0 \text{ GeV/c}^2$

• K:loose

bbbar Signa

π⁰veto

- Global PID(K) >0.1
- \circ cos $\theta_{\rm K}$ > -0.5
- K_S0:merged (V0+hh)
 - \sim 0.49 < M_{π+π-}< 0.51 GeV/c²
 - Vertex fit not failing
 - \circ cos $\theta_{p,v} > 0.99$
 - (angle between momentum and vertex vector)
 - **B**₀ and **B**⁺ decay chain fitted with treeFit algo
 - Mass constraint on η , η ',
 - NO IP vertex constraint
 - Keep only one candidate per event sortex by vtx pValue

Num Candidate

Selections

- $\eta' \to \eta \pi^+ \pi^-$
 - $E_{\gamma} > 150 \text{ MeV}$
 - $0.5 < M_{\eta} < 0.57 \ \frac{GeV}{c^2}$
 - $0.92 < M_{\eta'} < 1.0 \ \frac{GeV}{c^2}$

- $\eta' \to \rho \gamma$
 - $E_{\gamma} > 150 \text{ MeV}$
 - $\cos\theta_{\gamma} > -0.64$
 - $0.51 < M_{\rho} < 1.0 \ \frac{GeV}{c^2}$
 - $0.92 < M_{\eta'} < 1.0 \ \frac{GeV}{c^2}$

$$K$$
• $\cos \theta_K > -0.5$

 $\begin{array}{l} K_s^0 \\ \bullet \ \cos\!\theta_{p,v} > -0.64 \\ \bullet \ 0.49 < M_{K_s^0} < 0.51 \ \frac{GeV}{c^2} \end{array}$

Continuum suppression modelling

• Probability integral transformation transform distributions according given empirical cumulative distribution (background), then background is flat and signal is concentrated around maximum (one)

- 1 # empirical cumulative distribution function
- 2 from statsmodels.distributions.empirical_distribution import ECDF
- 3 ecdf = ECDF(qq_allCh['fBDT_MC'])
- 4 qq_allch['fBDT_MC_trans'] = ecdf(qq_allch['fBDT_MC'])
- 5 sgn_allch['fBDT_MC_trans'] = ecdf(sgn_allch['fBDT_MC'])
- 6 data_allch['fBDT_MC_trans'] = ecdf(data_allch['fBDT_MC'])

The fBDT transformed cut

- To reduce amount of continuum background we apply additional cut based on the transformed fBDT:
 - The cut was selected to reduce no more than 5% of signal
 - All events with value larger than 0.65 fBDT_MC_trans have been kept

Different techniques for different datasets

- Due to different distributions in different datasets
- We decided:
 - Keep the standard MC technique of training fBDT for Monte Carlo datasets
 - Keep the technique based on the sideband for real data
- Our approach will reduce systematics uncertainty from fBDT

Shapes of fBDT transformed

- The shape fitted on signal Monte Carlo dataset:
 - Signal: Sum of the three exponential pdfs
 - Continuum background: polynomial pdf with no larger then linear element
 - Peaking background: Sum of two exponential pdfs

Jakub Kandra, INFN Padova

Signal

Cont.Suppr. RooExponential sgn_cs_exp1 sgn_cs_exp1_a = 52.9 \pm 3.2 RooExponential sgn_cs_exp2 sgn_cs_exp2_a = 704.482 \pm 0.038 RooExponential sgn_cs_exp3 sgn_cs_exp3_a = 8.24 \pm 0.39 Sum of pdfs called sgn_cs_exp12 sgn_cs_frac1 = 0.644 \pm 0.012 sgn_cs_exp1 and sgn_cs_exp2 Sum of pdfs called sgn_cs_exp2 Sum of pdfs called sgn_cs_exp2 sgn_cs_frac2 = 0.575 \pm 0.017 sgn cs exp12 and sgn cs exp3

RooGaussian sgn_mbc_gs1 sgn_mbc_gs_mean = 5.279589 ± 2.7e-05 sgn_mbc_gs1_sigma = 0.002685 ± 2e-05 RooGaussian sgn_mbc_gs2 sgn_mbc_gs_mean = 5.279589 ± 2.7e-05 sgn_mbc_gs2_sigma = 0.01 ± 0.0016 Sum of pdfs called sgn_mbc_pdf sgn_mbc_frac = 0.9965 ± 0.0012 sgn mbc gs1 and sgn mbc gs2

Signal cross feed

RooExponential sxf_cs_exp1 sxf_cs_exp1_a = 8.36 ± 0.29 RooExponential sxf_cs_exp2 sxf_cs_exp2_a = 704.354 ± 0.011 RooExponential sxf_cs_exp3 sxf_cs_exp3_a = 66.9 ± 4.2 Sum of pdfs called sxf_cs_exp12 sxf_cs_frac1 = 0.76 ± 0.0094 sxf_cs_exp1 and sxf_cs_exp2 Sum of pdfs called sxf_cs_pdf sxf_cs_frac2 = 0.689 ± 0.013 sxf_cs_exp12 and sxf_cs_exp3

Jakub Kandra, INFN Padova

Belle II MC15ri sxf cdt = 364 fb-600 500 0.008 400 300 Entries 200 100 Pulls 0.1 -0.2 -0.10.0 0.2 $\Delta E [GeV]$

RooCrystalBall sxf_mbc_pdf sxf_mbc_gs_mean = 5.279973 ± 7.2e-05 sxf_mbc_gs_sigma = 0.003687 ± 5.2e-05 sxf_mbc_gs_alpha = 0.809 ± 0.028 sxf_mbc_gs_n = 4.01 ± 0.26 sxf_mbc_gs_alphaR = 10000.0 ± 0.0

RooGaussian sxf_de_gs1 sxf_de_gs1_mean = -0.00932 ± 0.00085 sxf_de_gs1_sigma = 0.02673 ± 0.00099 RooGaussian sxf_de_gs2 sxf_de_gs2_mean = -0.0663 ± 0.0046 sxf_de_gs2_sigma = 0.1408 ± 0.005 Sum of pdfs called sxf_de_pdf sxf_de_frac = 0.31 ± 0.013 sxf_de_gs1 and sxf_de_gs2

Continuum background

RooChebychev qqbar_cs_pdf qqbar_cs_che_lin = -0.051 ± 0.016 ArgusBG qqbar_mbc_pdf qqbar_mbc_arg_k = -20.5 ± 1.0 RooExponential qqbar_de_pdf qqbar_de_arg_c = -1.548 ± 0.08

Peaking background

RooExponential bbbar_cs_exp1 bbbar_cs_exp1_a = 4.8 ± 1.5 RooExponential bbbar_cs_exp2 bbbar_cs_exp2_a = 143.0 ± 63.0 Sum of pdfs called bbbar_cs_pdf bbbar_cs_frac = 0.781 ± 0.065 bbbar_cs_exp1 and bbbar_cs_exp2 ArgusBG bbbar_mbc_pdf bbbar_mbc_arg_k = -76.0 ± 12.0 RooExponential bbbar_de_pdf bbbar_de_arg_c = -3.6 ± 0.94

Yield Systematics

Yield systematics in arxiv paper

	The summary of systematics uncertainties (in 70) by category and chainter				
	Channel	$B^{\pm} \to \eta' K^{\pm}$	$B^0 o \eta' K^0_S$	$B^{\pm} \to \eta' K^{\pm}$	$B^0 \to \eta' K_S^0$
	Source	$\eta' o \eta \pi^+ \pi^-$		$\eta' o ho \gamma$	
	Tracking efficiency	2.1	2.8	2.1	2.8
Removed by using Data side band for modelling	Photon efficiency	0.5	0.5	0.5	0.5
	K_S^0 efficiency	-	4.5	-	4.5
	π^{\pm} PID	-	-	2.4	2.4
	K^{\pm} PID	2.5	-	2.5	-
	_Cont. supp. modelling	5.0	1.0	5.5	2.3
	SxF fraction	2.6	1.8	5.9	3.2
	$\mathrm{N}(B\overline{B})$	1.4			
	Total	6.6	5.9	9.1	7.2

TABLE 2. Summary of systematics uncertainties (in %) by category and channel.

Signal/Background only TDCPV fit

TDCPV systematics

From: <u>JHEP 1410 (2014) 165</u> Belle 772×10⁶ BBar pairs

Source	$\mathcal{S}_{\eta'K^0}$	$\mathcal{A}_{\eta'K^0}$
Vertexing	± 0.014	± 0.033
Δt resolution	± 0.025	± 0.006
$\eta' K_S^0$ signal fraction	± 0.013	± 0.006
$\eta' K_L^0$ signal fraction	± 0.005	± 0.004
Background Δt PDF	± 0.001	< 0.001
Physics parameters	± 0.001	< 0.001
Flavor tagging	± 0.003	± 0.003
Possible fit bias	± 0.001	±0.001
Tag-side interference	± 0.001	± 0.020
Total	± 0.032	± 0.040

- Vertexing:
 - They are estimated by varying several algorithm conditions and repeating the final fit.
 - In particular, selection on h (reduced χ^2) and σ_{τ}
 - IP constraint varied
 - Mis-alignment
- Dt resolution:
 - Varies parameters of DT resolution (using tatami)
- Signal fraction:
 - Varying parameter of pdf
- Tag-side (A_{CP}):
 - Toys MC with varied signal DT distribution

Јакир капога, пини Расоча

TDCPV systematics

From: <u>PRD 79 (2009) 052003</u> BaBar w/ 467 × 10⁶ BB pairs

Source	$S_{\eta' K^0_S}$	$C_{\eta'K^0_S}$
Variation of PDF parameters	0.006	0.009
Bias correction	0.006	0.005
Interference from DCSD on tag side	e 0.001	0.015
$B\overline{B}$ background	0.009	0.005
Signal Δt parameters from B_{flav}	0.009	0.015
SVT alignment	0.002	0.003
Beam-spot position and size	0.002	0.001
Vertexing method	-	11 ₂₀ 11
Self-crossfeed	0.004	0.001
Total	0.016	0.024

- Pdf parameters

 Toys MC varying pdf params
- Bias
 - From toys MC
- BB-background
 Varied +/-20%
- B_{flav}
 - Varies B→charmless CP parameters within uncert for BB background
- Self-crossfeed:
 - Toy MC w/ and w/o SxF
- Interference
 - ~same as Belle