tau → K_S0 l

Klemens Lautenbach

Physics Week Valenica 30.11 2022

Motivation

• Lepton Flavor Violation (LFV)

 $n_{\tau}=1$

Quantity to be measured $\mathcal{B}(\tau \to lK_S^0) = \frac{N_{obs} - N_{exp}}{\mathcal{L} \cdot 2\sigma_{\tau\tau} \cdot \epsilon_{lK_S^0}}$

• Forbidden in SM

.

30.11.2022

Example: LFV decay $\mu^-
ightarrow e^- \gamma$ via neutrino oscillations:

 Only possible due to neutrino oscillation BR ~10e-50 → not accessible
 Extensions to the SM (New Physics) predict such decays via Leptoquarks
 Can couple to quarks and leptons and so feature LFV decays

Motivation: LFV signal (far, far away) \rightarrow New Physics \rightarrow some nice prize

Analysis flow

Reconstruction

- Online cuts from next slide
- total_track < 5 (exclusive)</pre>

D/MC comparison Systematics extraction

- Signal channel sidebands comparison
- Reference channel comparison
- List of Systematics
 - ParticleID
 - Tracking efficiency
 - Trigger efficiency
 - BDT efficiency
 - Luminosity
 - Taupair cross section
 - Momentum scale
 - Kshort efficiency depending on 3D distance

Branching Fraction Upper Limit

- Use pyhf for calculation

$$\mathcal{B}(\tau \to lK_S^0) = \frac{N_{obs} - N_{exp}}{\mathcal{L} \cdot 2\sigma_{\tau\tau} \cdot \epsilon_{lK_s^0}}$$

Offline selections

- Optimize some offline cuts with punzi FOM

$$FOM = \frac{\epsilon_{lK_S^0}}{\sigma/2 + \sqrt{Bkg}}$$

XGBoost BDT

- ~30 variables taken as initial variable set
- Parameter optimization with Optuna
- Remove feature with lowest score and retrain accuracy_score metric from sklearn.metrics used to find best set of variables
- run BDT 50 times on same, reshuffled samples
- take the one optimizing the Punzi FOM in 3σ SR
- use _TOP, _KLM, _ECL muonID/pionID variables for BDT (in flight conversion) → **is this legal?**

Physics Week, Valencia lautenbach@cppm.in2p3.fr

Tried out two reconstruction methods

Photons	• Tracks	• K _s π ⁺ π ⁻
- E > 0.02	- $pT > 0.1$, $-3.0 < dz < 3.0$, $dr < 1.0$) – stdV0s.stdKshorts thrust-axis
0.8660 < cosTheta < 0.9563	 isDescendantOfList(K S0:FromLoosePions) == 0 	- goodBelleKshort > 0 κ_{2}^{0}
- clusterNHits > 1.5	ParticleID	- significanceOfDista $e^{\pm}\mu^{\pm}$
 isDaughterOfList(pi0:fromLooseGammas) == 0 	- e:	nce > 3 e^+ τ_{sig} e^-
• Neutral Pions	• electronID noSVD noTOP > 0.9	• Event $e^{\pm}v_e$
– E _v > 0.1	• muonID noSVD < 0.95	- CorrectBrems: $\mu^{\pm}\nu_{\mu}$
0.8660 < cosTheta < 0.9563	- μ:	angle I hreshold=0.1 $\pi^ \nu_{\tau}$ 50
- clusterNHits > 1.5	 Induitib hosVD > 0.95 electronID noSVD noTOP <= 0.9 	.9 - 20σ signal region Inclusiv: total_tracks < 7
- 0.115 < M < 0.152	- π:	around $M(\tau)$ and Exclusiv: total_tracks < 5
•	• muonID noSVD <= 0.95	

electronID noSVD noTOP <= 0.9

Calculate branching fraction upper limit with simple poissonian method (also the Belle one). Just needs signal efficiency and background as input. *No systematic errors included.*

Inclus	siv				Exclus	siv			
Belle II (Belle)	ε [%]	Background	BR [10^-8]	1-B/ B2	Belle II (Belle)	ε [%]	Background	BR [10^-8]	1-B/ B2
e-channel	14.76 (10.2)	2.24 (0.18)	2.3 (2.04)	11 %	e-channel	13.27 (10.2)	<mark>0</mark> (0.18)	1.41 (2.04)	44 %
mu-channel	11.24 (10.7)	1.47 (0.35)	2.7 (2.09)	23 %	mu-channel	9.41 (10.7)	<mark>0</mark> (0.35)	1.99 (2.09)	5 %
0.11.2022				Physics Wee lautenbach@c	k, Valencia ppm.in2p3.fr				4

Data/MC comparison

- Electron channel
 - Hadronic tag
 - Data/MC before offline cuts: 0.74
 - Data/MC after offline cuts: 0.98
 - Leptonic tag

30.11.2022

- Data/MC before offline cuts: 0.53
- Data/MC after offline cuts: 0.87
 - BDT_proba > 0.5 : 0.98
 - BUT: shapes are off, low MC statistics, discrepancy in shapes likely due to missing processes in simulation (ISR)

- Muon channel
 - Hadronic tag
 - Data/MC before offline cuts: 0.65
 - Data/MC after offline cuts: 0.79
 - good agreement in shape, overall qqbar normalization off by ~20%
 - Leptonic tag
 - Data/MC before offline cuts: 0.4
 - Data/MC after offline cuts: 0.98

BACKUP

BDT performance

Electron channel

Muon channel

Physics Week, Valencia lautenbach@cppm.in2p3.fr

Performance after BDT

• Results in 3 σ SR on 2/ab test sample

- e-channel: $\varepsilon = 13.07\%$, bkg = 0, bkg_scaled = 0 (weighted)
- μ -channel: ϵ = 9.41 %, bkg = 0, bkg_scaled = 0 (weighted)
- Stronger cut on pID could bring background to zero
 → unfortunately this drops signal efficiency to ~5%
- Sensitivity projection with Poissonian UL calculator (no systematics):
 - Belle numbers computed with the same UL calculator used for projections of Belle II results. Background scaled to 671/fb

Belle II (Belle)	ε [%]	Background	BR [10^-8]	1-B/B2
e-channel	13.27 (10.2)	<mark>0</mark> (0.18)	1.41 (2.04)	44 %
nu-channel	9.41 (10.7)	<mark>0</mark> (0.35)	1.99 (2.09)	5 %

Performance after complete chain better than in semi-inclusive case!

If cutting less strict on the muon BDT, the main Background source is in-flight conversion $\pi \to \mu$

Trigger sudies

- Studie trigger efficiency on signal and reference (tau \rightarrow K_S0 pi) channel
 - Trigger efficiency: *eff* = (*N_bit* & *N_ref*)/*N_ref*, with *N_ref* = *fff* OR *ffs* OR *ffo* OR *f30* (CDC lines)

Trigger sudies

Trigger efficiency on pre-selection variables (tau \rightarrow K S0 pi reference channel)

30.11.2022

Trigger sudies

- Trigger efficiency corrections
 - Calculate trigger efficiency on data and MC and extract corrections for MC as bin-by-bin ratio
 - For the following data/MC comparison the trigger line selection and the trigger efficiency corrections are applied!

Physics Week, Valencia lautenbach@cppm.in2p3.fr

Data/MC comparison in sidebands – e-channel, h-tag

Data/MC comparison in the electron channel, hadronic-tag in the 5-20 sigma side-bands

moriond22, ∫Ldt ~ 189.9 fb⁻¹

- No preselection: D/MC = 0.74
- Including preselections: D/MC 0.98
- Preselection variables:
 - tau tag E CMS < 5
 - -4 < lepton_signal_pz_CMS < 4
 - 0.49 < K S0 signal M < 0.51
 - third 3prong pt CMS > 0.1
 - thrustAxisCosTheta < 0.9

Ldt ~ 189.9 fb

(0.015) 300

200 Uts

Belle II preliminary

30.11.2022

80

60

Belle II preliminary

tau tag E CMS

Data/MC comparison in sidebands – µ-channel, I-tag

- Data/MC comparison in the muon channel, leptonic-tag in the 5-20 sigma side-bands
 - No preselection: D/MC = 0.4
 - Including preselections: D/MC 0.98
 - Preselection variables:

