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Let’s look at an an analysis of

τ−→ XY

in which we

• identify all sources of events that mimic the signal (backgrounds) and

• determine criteria that

• select for signal events and
• reject background ones.

Explicitly, for each source i, we observe that

• for Mi simulated events,

• mi events pass the selection criteria.

We then look at the real data and observe that

• for data of a known size,

• N events pass the same selection criteria.
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What’s the goal?

To measure the branching fraction

Bs ≡
Γ(τ−→ XY )

Γ(τ−→ anything)

What have we observed?

• Mi → mi in simulation

• N in data (of known size)

How do we connect the two?

A model . . . a physics model.

Let’s think like physicists first and then like statisticians.
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From collision to observation:

For signal,

e+e−→ τ+τ−

τ± → 1 prong occurs Bt fraction of the time (tag)

τ∓ → XY occurs Bs fraction of the time (signal)

• 2Bs Bt of τ τ events are the type of event we reconstruct.

• And we have an efficiency εs to detect them.

So we expect to observe 2εs Bs Bt of τ τ events.

How many τ τ events are there?
στ τ L

• στ τ ≡ cross section for e+e−→ τ+τ−

• L ≡ integrated luminosity of the data set

So we expect to measure 2εs Bs Bt στ τ L signal events
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From collision to observation:

For each background,

e+e−→ (background source)i

• with cross section σi

• and efficiency εi

So we expect to measure
∑
i εi σi L background events

In total, we expect [
2εs Bs Bt στ τ +

∑
i

εi σi

]
L events
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From simulation to observation

We simulated Mi events, and observe mi events after selection criteria.

This informs us about the efficiency.

Naively:

εi =
mi

Mi

± mi

Mi

√
1

mi

+
1

Mi

Naive . . . and wrong . . .X ± Y implies a normal distribution,

P (εi|Mi,mi) = N
(
mi

Mi

,
mi

Mi

√
1

mi

+
1

Mi

)
which is not the case.

And what happens when mi = 0:

εi(mi = 0) = 0 exactly.

This states we’re 100% confident the efficiency is 0 . . . regardless of Mi’s value.
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This is also not a definition of an efficiency.
It’s just a ratio of two numbers.

We need a statistical model.

Let’s try again using Bayesian statistics.

An ultra quick refresher:

P (A ∩B) = P (B ∩A)

P (A|B)P (B) = P (B|A)P (A)

P (A|B) =
P (B|A)P (A)

P (B)

We relate the conditional probability of A given B (the left side)

to the conditional probablity of B given A (the right side)
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P (A|B) =
P (B|A)P (A)

P (B)

Let’s look at this more concretely in terms of data and parameters:

We want to know the probability of parameters, ~λ, given measured data

P (~λ|data) =
P (data|~λ)P (~λ)

P (data)

So we use Bayes’ theorem.

These four parts have common names (and symbols):

P (~λ|data) ≡ posterior prob. distribution

P (data|~λ) ≡ L(data|~λ) ≡ likelihood of the data

P (~λ) ≡ P0(~λ) ≡ a priori prob. distribution

P (data) ≡ Z(data) =
∫
L(data|~λ)P0(~λ) d~λ ≡ evidence
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P (~λ|data) ∝ L(data|~λ)P0(~λ)

Since we can normalize the posterior from the above proportionality,
we don’t need to

• concern ourselves with the evidence,

• normalize the likelihood, or

• normalize the prior
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P (~λ|data) ∝ L(data|~λ)P0(~λ)

Let’s look now at our efficiency, εi:

P (εi|Mi,mi) ∝ L(mi|Mi, εi)P0(εi)

What is the likelihood for selecting mi events from a total of Mi

when the efficiency for selecting each event is εi?

L(mi|Mi, εi) ∝ εimi(1− εi)Mi−mi

⇒ the Binomial distribution:

What about P0(εi)? A general approach that parameterizes two common
choices:

P0(εi|δi) =

{
(εi)
−δi (1− εi)−δi , if εi ∈ [0, 1],

0, else

δi = 0 ⇒ P0(εi) = constant prior δi = 1 ⇒ P0(εi) = double-inverse prior
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Putting it all together

P (εi|Mi,mi) ∝ εimi−δi(1− εi)Mi−mi−δi

if εi ∈ [0, 1], else it’s zero.

In terms of εi, this is the Beta distribution . . . with properties:

mean ε̄i = mi+1−δi
Mi+2−2δi

mode ε∗i = mi−δi
Mi−2δi

variance Var[εi] = ε̄2i
Mi−mi+1−δi

(mi+1−δi)(Mi+3−2δi)
Var[εi]

ε̄
2
i

= 1
mi+1−δi −

1
Mi+3−2δi

− 1
(mi+1−δi)(Mi+3−2δi)

skew = . . .
kurtosis = . . .

11 / 22



Let’s make the full model now:

P (Bs,Bt,~ε, ~σ, L|N, ~M, ~m) ∝ L(N, ~M, ~m|Bs,Bt,~ε, ~σ, L)P0(Bs,Bt,~ε, ~σ, L)

Let’s focus on the likelihood first. It factorizes:

L(N, ~M, ~m|Bs,Bt,~ε, ~σ, L) = L(N |Bs,Bt,~ε, ~σ, L)
∏
i

L(mi|Mi, εi)

And we already know L(mi|Mi, εi).

The likelihood to observe N events, given an expectation is

L(N |Bs,Bt,~ε, ~σ, L) ∝ νNe−ν

⇒ the Poisson distribution . . . with

ν ≡
[

2εs Bs Bt στ τ +
∑
i

εb σb

]
L
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What about the prior?

It factorizes:

P0(Bs,Bt,~ε, ~σ, L) = P0(Bs)P0(Bt)P0(L)
∏
i

P0(εi)P0(σi)

We’ve already discussed P0(εi).

What about the others?

• P0(Bt) = N (Bt|mean, variance) [PDG. . . ]

• P0(L) = N (L|mean, variance) [Belle II’s measured value]

• P0(σi) = N (σi|mean, variance)

• measured value @
√
s = 10.58 GeV

• calculated value @
√
s = 10.58 GeV

If necessary,
√
s could itself be a parameter.

And what about P0(Bs)?

This is our parameter of interest . . . we have several choices.
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P0(Bs) Choices

• P0(Bs) = flat in [0,1] → flat in the value of Bs

• P0(Bs) ∝ 1/Bs → flat in the scale of Bs

• P0(Bs) = previous measurement result → most informative

This may lead to the lowest upper bound,
but requires work to figure out the proper likelihood.

Ordinarily we don’t do this, so that our measurement can be used with
others—cf. the PDG—but since experiments generally don’t report useful
results on upper limits, the PDG doesn’t average them anyway!

The results should not vary greatly (at least between the first two choices).

Such a check is easy—and should be done.
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Putting this aaaaall together . . .

P (Bs,Bt,~ε, ~σ, L|N, ~M, ~m) ∝ L(N, ~M, ~m|Bs,Bt,~ε, ~σ, L)P0(Bs,Bt,~ε, ~σ, L)

L(N, ~M, ~m|Bs,Bt,~ε, ~σ, L) = L(N |Bs,Bt,~ε, ~σ, L)
∏
i L(mi|Mi, εi)

L(N |Bs,Bt, εs, στ τ , L) = Poisson(N |2εs Bs Bt L+
∑
bεb σb L)

L(mi|Mi, εi) = Binom(mi|Mi, εi)

P0(Bs,Bt,~ε, ~σ, L) = P0(Bs)P0(Bt)P0(L)
∏
i

P0(εi)P0(σi)

P0(Bt) = world average

P0(L) = Belle II measurement from other channels

P0(εi) = εi
−δi(1− εi)−δi

P0(σi) = measurement or calculation

P0(Bs) = Bs−δB
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a semantic matter:

L(mi|Mi, εi)× P0(εi) = Binom(mi|Mi, εi)× P0(εi)

can instead be taken as a prior on εi,
with no likelihood component for it then:

P0(εi) = Beta(εi|mi + 1− δi,Mi −mi + 1− δi)
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So we have a model:

P (Bs,Bt,~ε, ~σ, L|N, ~M, ~m) = . . .

But we don’t care about Bt, ~ε, ~σ, L . . . they’re nuissance parameters.

So we integrate them out:

P (Bs|N, ~M, ~m) =

∫
P (Bs,Bt,~ε, ~σ, L|N, ~M, ~m) dBt d~ε d~σ dL

This is called the “marginalization” of Bs.

The integral is difficult (perhaps impossible?) to analytically calculate.

But it’s very easy to calculate on the computer via sampling:

• Sample from the full posterior.
• Histogram of Bs = marginalization of Bs

Then we have the probability distribution for Bs and upper limits are easy:∫ BαUL
s

0

P (Bs|N, ~M, ~m) = α
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so let’s do it . . .

Let’s say we have the following information

BG Source M [106] m σ [nb]
qq 372 0 3.720 00± 0.003 72
BB 105 0 1.100± 0.011
eeγ 2940 0 294± 2
µµγ 575 0 1.148± 0.005
eeµµ 1890 0 18.97± 0.02
eeee 397 0 39.74± 0.02
τ τ (bg) 91.9 0 0.919± 0.003

τ−→ XY (sig) 1 53 489

Bt = (84.71± 0.06)× 10−2 L = (100.0± 1.4) fb−1
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N = 0, all δ = 0 (flat priors)
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Let’s look at different measurement possibilities:
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an interesting aside:

Let’s look at a Poisson distribution with two sources:

P (ν, β|N) ∝ (ν + β)Ne−(ν+β)P0(ν)P0(β)

The marginalized distribution for ν is

P (ν|N) ∝ e−νP0(ν)

∫
(ν + β)Ne−βP0(β)dβ

And when N = 0:

P (ν|N = 0) ∝ e−νP0(ν)

∫
e−βP0(β)dβ

That is,
P (ν|N = 0) ∝ e−νP0(ν)

⇒ P (ν|0) is independent of prior knowledge on β!
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