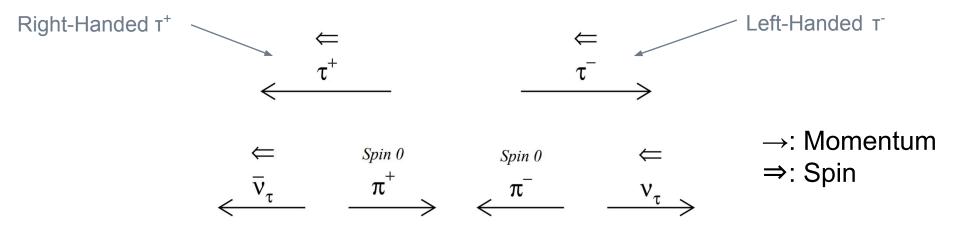
Tau Polarimetry Update

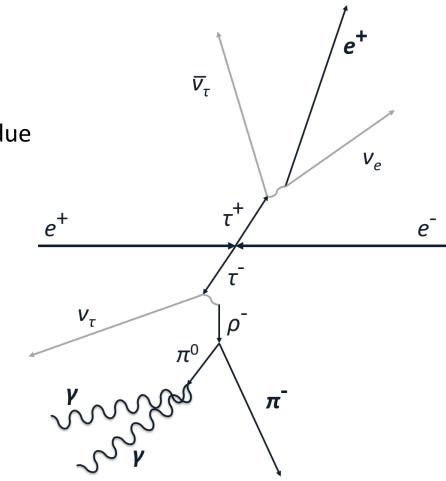
Caleb Miller

B2GM Oct 2022


Tau Polarimetry

The polarization of tau's (P_τ) produced in e⁺e⁻ collisions at 10.58 GeV is related to the electron beam polarization (P₂) through:

$$P_{\tau^{-}} = P_e \frac{\cos\theta}{1 + \cos^2\theta} - \frac{8G_F sg_V^{\tau}}{4\sqrt{2}\pi\alpha} \left(g_A^{\tau} \frac{\overrightarrow{|p|}}{p^0} + 2g_A^e \frac{\cos\theta}{1 + \cos^2\theta} \right)$$


Note: $\cos\theta$ defined as the polar angle of the T⁻ with respect to the electron beam

Tau polarization information can be extracted from the kinematics of the tau decay

Tau Event Selection

- As a proof of concept, we have developed Tau Polarimetry at *BABAR* using $T^{\pm} \rightarrow \rho^{\pm} V_{T} \rightarrow \pi^{\pm} \pi^{0} V_{T}$ decays
- We expect uncertainties to be highly correlated between detectors due to similar designs
- Developed the technique on 32.28 fb⁻¹ of data
 - Final measurement performed on remaining 391.90 fb⁻¹
- Selected tau events in a 1v1 topology, (ρ vs. e)
 - ρ has large branching fraction, e for clean tag
- Signal candidates are defined as a charged particle with a π^0
- qq
 q
 events are eliminated with the electron requirement
- Angular cuts and a minimum p_T of 1.2 GeV reduce two photon and Bhabha contamination
- Achieve a 99.7% pure tau-pair sample (0.3% Bhabha)
- 90% of selected events contain a $T^{\pm} \rightarrow \pi^{\pm}\pi^{0}V_{\tau}$ decay
 - 8% a1 decays, 2% other hadronic

Status from June CM

Preliminary measurement shown at a number of conferences

 $\langle P \rangle = -0.0010 \pm 0.0036_{stat} \pm 0.0030_{sys}$

- Plan to extend analysis in two ways
 - Include low p_τ events, increases efficiency by 71%
 - Add muon tag to double statistics
- Preliminary tests of run 3 showed improvement in systematic uncertainties

e-mu Tagged Measurement

• Completed full polarization measurement with both lepton tags

$\langle P \rangle = -0.0002 \pm 0.0025_{stat} \pm 0.0023_{sys} \pm 0.xxxx_{sys}$

- Significant improvement in statistical and systematic uncertainties
- Analysis is now an unblinded analysis
 - Goal is on providing best tool for Chiral Belle, rather than a physics measurement at BaBar
- Working on refining a few new variables which will slightly increase the final systematic uncertainty
- Expectation is that total uncertainty will remain under 0.0050 (0.5%)

Post Unblinding

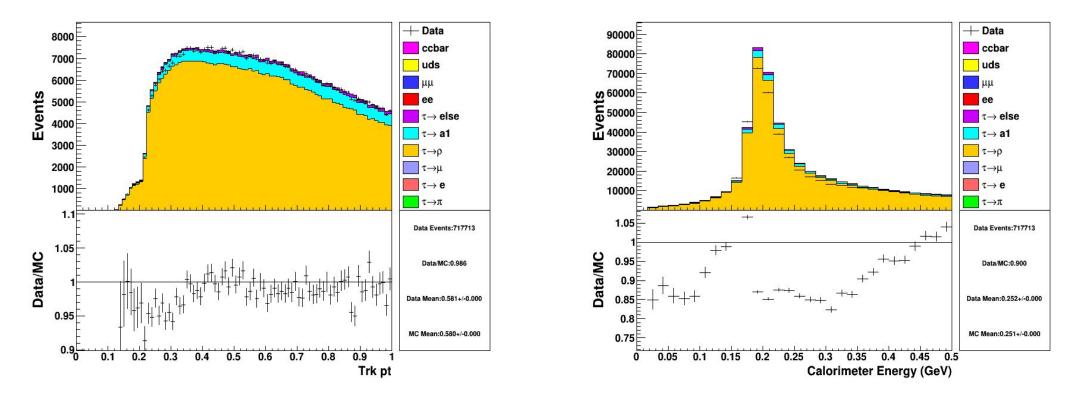
- Due to the tensions with the measurement a number of investigations were made
- Quality Improvements
 - \Rightarrow Minimum Track p_{τ}
 - ⇒ Minimum Track EMC Deposit
 - \Rightarrow Event p_T > 0.25 MeV -> 0.35 MeV
 - \Rightarrow Rho decay product angular separation
- Other Improvements/Investigations
 - \Rightarrow cos θ definition
 - \Rightarrow charge asymmetry in fits
 - ⇒ cancellation of systematic effects in charge asymmetry
 - \Rightarrow polarization dependence on Event p_{T}

Charge Asymmetry in Fit

• Fit results show tension between fit results for positive and negative charge

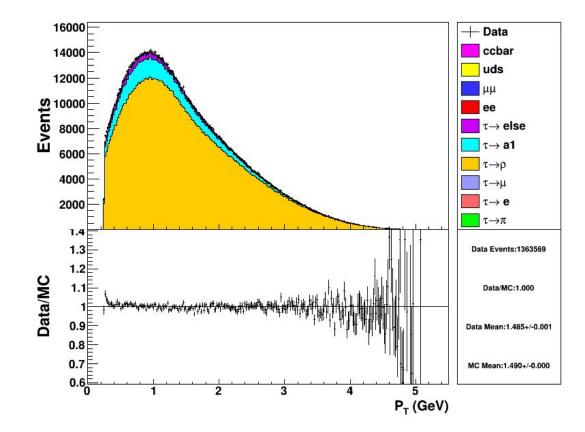
Sample	Positive	Negative	Tension
Run 1	-0.0324±0.0124	-0.0073±0.0126	-1.42
Run 2	-0.0051±0.0075	-0.0175±0.0079	1.14
Run 3	0.0145±0.0100	-0.0071±0.0105	1.49
Run 4	-0.0103±0.0057	-0.0213±0.0061	1.12
Run 5	-0.0038±0.0050	-0.0160±0.0053	1.67
Run 6	0.0066±0.0068	-0.0105±0.0066	1.80
Total	-0.0038±0.0028	-0.0152±0.0029	2.80

Tension could indicate unaccounted for bias

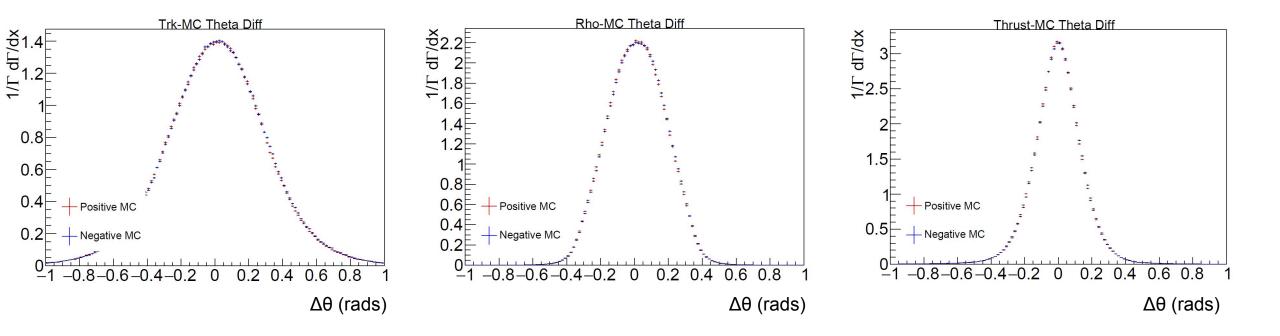

Charge Asymmetry Systematic Cancellation

- Sign of polarization sensitivity flips with charge
- As such non-polarization sensitive biases largely cancel in the combined average
- In order to demonstrate this a 1% slope bias was added to cosθ
- Shifts in fit from no bias added:

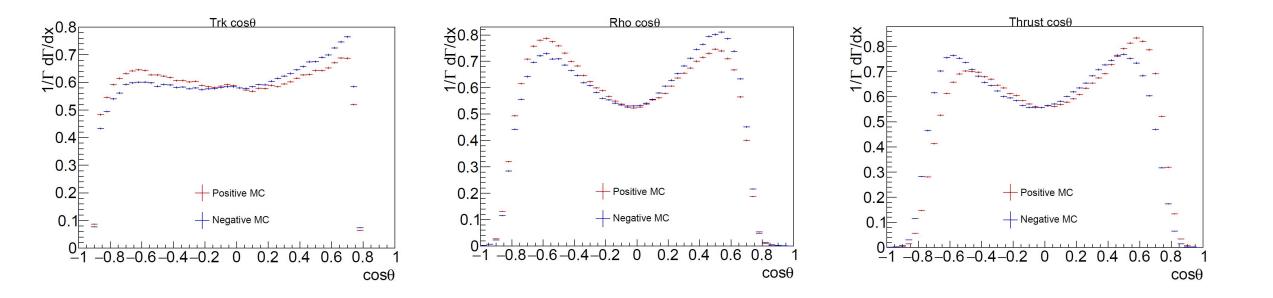
-1% slope	Pos	Neg	Ave
MC 1	0.0004	-0.0005	0.0000
MC 2	0.0007	-0.0013	-0.0002
MC 3	0.0013	0.0008	0.0014
Data	-0.0001	-0.0005	-0.0001
+1% slope	Pos	Neg	Ave
+1% slope MC 1	Pos -0.0004	Neg 0.0004	Ave 0.0000
MC 1	-0.0004	0.0004	0.0000


Minimum Track p_{τ} and Energy Deposition

- In order to improve the quality of particles selected and their MC modelling two requirements were investigated
 - For each track: p₁>350 MeV and EMC>50 MeV
 - \succ p_T was implemented, while the EMC cut was found to be unnecessary


Event pT change

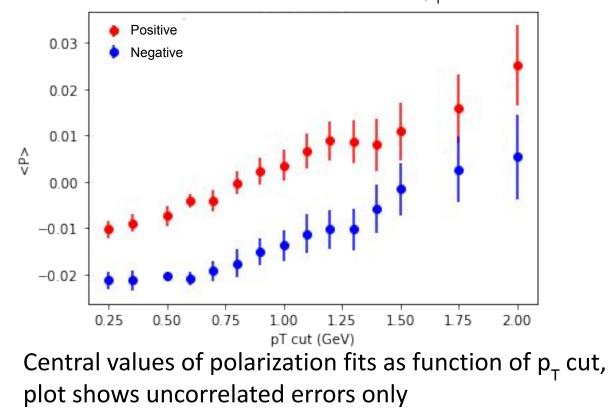
- After unblinding some two-photon backgrounds were observed in the Event p_T distributions in Run 5 which were not observed in Run 3
- Increasing the cut to 350 MeV from 250 MeV removes the two-photon events


$\cos\theta$ Definition

- The polarization theory on slide 2 defines cosθ as the direction of the negative τ
- The polarization fit has used the direction of the final state pion as a proxy for this variable
- Using rho or thrust direction could provide better sensitivity
- Differences between track, rho, thrust direction and MC Truth:

$\cos\theta$ Definition

- The polarization theory on slide 2 defines cosθ as the direction of the negative τ
- The polarization fit has used the direction of the final state pion as a proxy for this variable
- Using rho or thrust direction could provide better sensitivity
- cosθ distributions for track, rho, thrust direction:

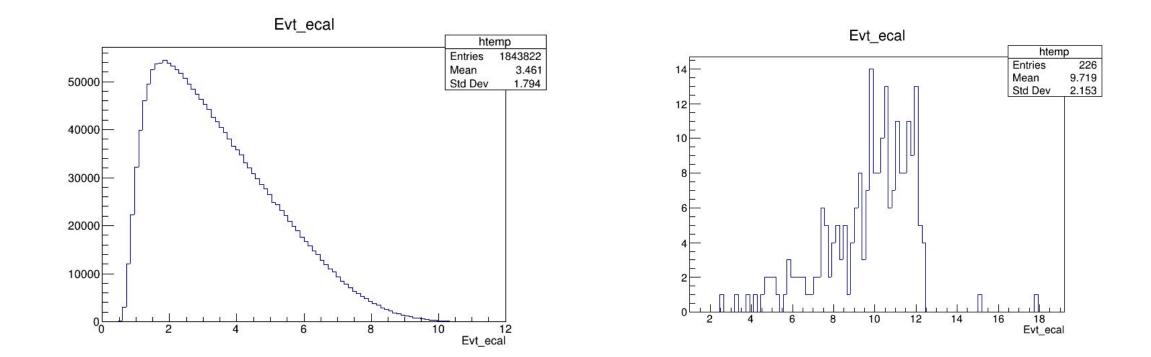


$\cos\theta$ Definition

- The polarization theory on slide 2 defines cosθ as the direction of the negative τ
- The polarization fit has used the direction of the final state pion as a proxy for this variable
- Using rho or thrust direction could provide better sensitivity
 - Improves sensitivity 0.0073 -> 0.0062
 - Shifts fit ~1.5% towards positive
 - Run 2 test suggests systematic uncertainty O(0.0004)

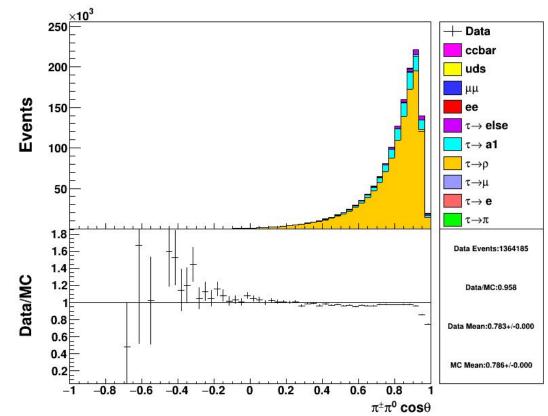
p_{T} Dependence

- Polarization fits are showing a linear dependence on the p_τ cut
- Unclear what the origin of the dependence is



Polarization fits as function of p_{τ} cut

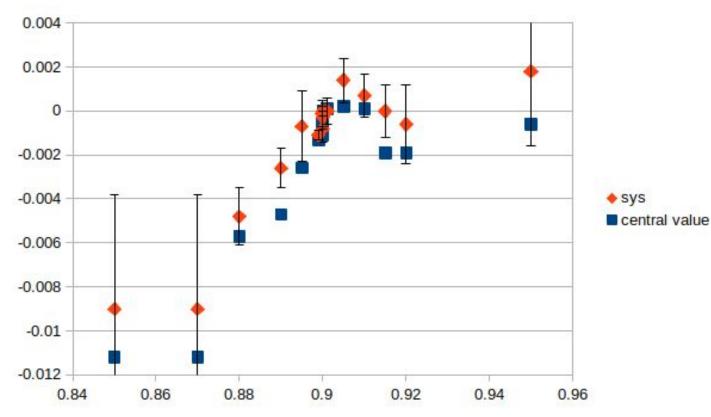
p_T dependence seems flat at low values of the cut


Maximum EMC Energy

- A cut on the maximum calorimeter energy can eliminate 50% Bhabhas at minimal loss of signal
- At 10 GeV cut 521/1843822 signal events are cut, and 119/226 Bhabhas are cut
- Results in no significant changes to fits

pi-piO angular separation

- The angular separation between the pions from the rho was investigated in the past as a source of data/mc discrepancy and was found to improve the agreement slightly, but have minimal effect of the average beam polarization
- The effects of a cut on charge asymmetry had not been studied
- By placing a cut at 0.9 can improve data/mc as well as improve charged fit agreement


pi-piO angular separation

• Tension between charged data fits in each run:

Data	No angular cut	cut at <0.9
Run 1	-1.12σ	-0.60σ
Run 2	2.18σ	1.43σ
Run 3	3.17σ	1.79σ
Run 4	2.62σ	-0.28σ
Run 5	4.42σ	0.02σ
Run 6	3.27σ	0.60σ

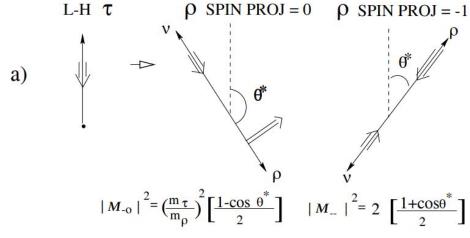
pi-pi0 angular separation

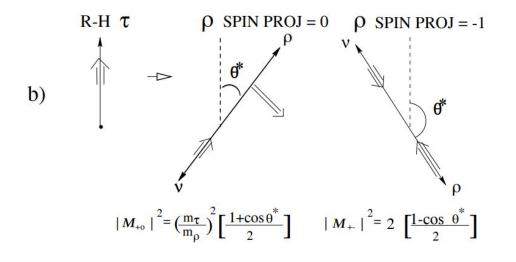
- MC/Data agreement in rho mass suggests agreement on the order of 2 MeV
- Corresponds to an angular separation of Δcosθ≈(m_ρ*Δm_ρ)/(E_πE_{π0})≈0.0005-0.004
 Run 3 test suggests systematic uncertainty O(0.0005)
- Study of cut shows some stability above 0.9

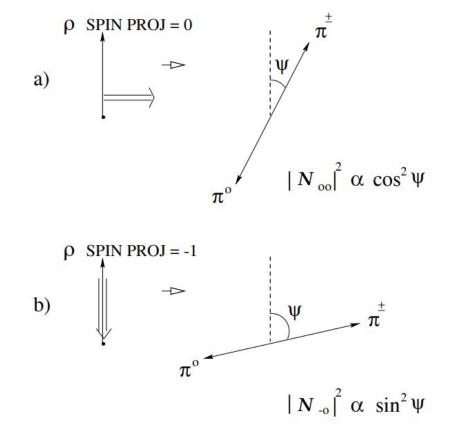
blue squares show the data polarization fit as a function of angular cut. Stat uncertainty of ~0.01 not shown.

red triangles show data-MC polarization, error bars represent MC fluctuations

Conclusions


- Processing systematic uncertainties for new selection
 - \Rightarrow should have final result by the end of the month
- All previously established systematic uncertainties seem to remain at a similar level to prior studies
- Expecting to arrive at a final systematic uncertainty of <0.0030
 - ⇒ Corresponds to a total uncertainty of <0.0040 for the BaBar data


Thank You!


Backup Slides

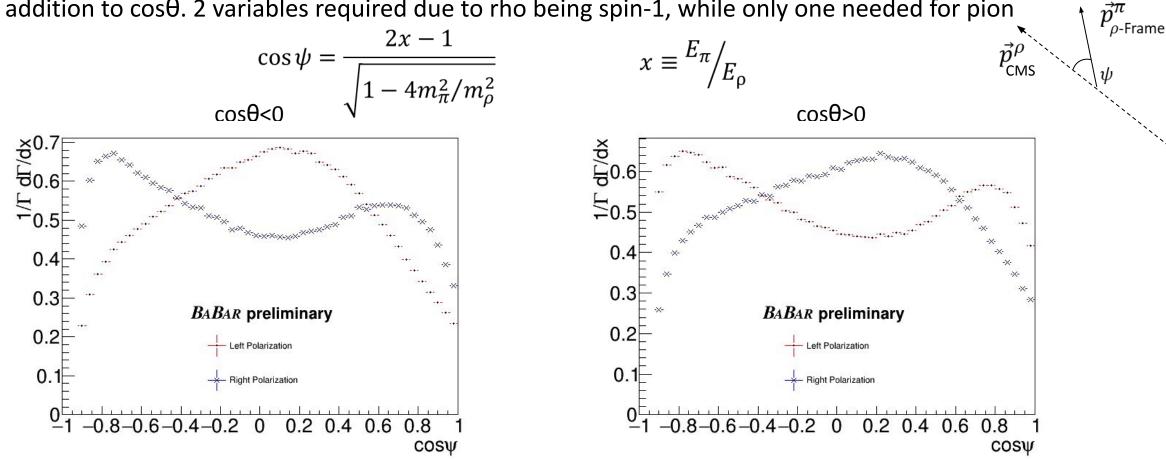
Rho Spin Analysis

The rho complicates the spin projections, which necessitates two variables to extract the polarization



From Dr. Manuella Vincter, PhD thesis, UVIC, 1996

Polarization Observables


Polarization sensitivity in a rho decay is maximized by analyzing two angular variables² in addition to cosθ. 2 variables required due to rho being spin-1, while only one needed for pion

² K. Hagiwara, A. Martin, D. Zeppenfeld, Tau Polarization Measurements at LEP and SLC, Phys. Lett. B. 235, 1998, DOI: 10.1016/0370-2693(90)90120-U

Polarization Observables

 Polarization sensitivity in a rho decay is maximized by analyzing two angular variables² in addition to cosθ. 2 variables required due to rho being spin-1, while only one needed for pion

² K. Hagiwara, A. Martin, D. Zeppenfeld, Tau Polarization Measurements at LEP and SLC, Phys. Lett. B. 235, 1998, DOI: 10.1016/0370-2693(90)90120-U