

GNN-based Track and Vertex Finding

B2GM TRG

Lea Reuter, Philipp Dorwarth, Slavomira Stefkova, Torben Ferber | Thursday 3rd November, 2022

www.kit.edu

Project members: Machine Learning for Trigger

KIT (ETP)

L. Reuter, I. Haide, P. Dorwarth, P. Ecker, S. Stefkova, T. Ferber

KIT (ITIV)

M. Neu, K. Unger, J. Becker

MPI (MPP)

E. Schmidt, F. Meggendorfer, C. Kiesling

Motivation

Credit: Patrick Ecker

Searches for displaced vertices

- Displaced vertices important signature in searches for new physics
- Example signal decay with dark photon A' and dark higgs h' $e^+e^- \rightarrow A'h',$ $h' \rightarrow \mu^+\mu^-,$ $A' \rightarrow \chi_1\chi_2,$ $\chi_2 \rightarrow \chi_1 e^+e^-$

Problem:

- Tracks with displacement larger than 40 cm are currently not triggered by Single Track Trigger (stt)
- stt reconstruction efficiency decreases depending on displacement

Project Goal

- Improve Track and Develop Vertex Finding using Graph Neural Networks (GNNs):
 - Find events with displaced vertices (develop vertex finding)
 - Need to improve online L1 Trigger reconstruction

Project Goal

Improve Track and Develop Vertex Finding using Graph Neural Networks (GNNs):

- Find events with displaced vertices (develop vertex finding)
- Need to improve online L1 Trigger reconstruction

Challenge:

- Tracks with low *p*_t (tracks curve)
- Large occupancy due to beam-background hits (nominal phase 3)
- Beam-background tracks (look like signal tracks)
- Displaced vertices that are not pointing back to the interaction point

/group/belle2/dataprod/BGOverlay/nominal_phase3/ prerelease-05-00-00a/overlay/phase3/BGx1/

MC Simulated Samples

Release:

feature/BII-9379-store-cdchit-relations-to-all-particle

- Globaltags: main_2022-01-27 and patch_main_release-07
- Starting with BGx0 and early-phase 3 BGx1 /group/belle2/dataprod/BG0verlay/early_phase3/ release-05-01-15/overlay/phase31/BGx1/set0/
- Signal samples:
 - Single displaced vertex samples • $e^+e^- \rightarrow A'h',$ $h' \rightarrow \mu^+\mu^-,$ $A' \rightarrow \chi_1\chi_2,$ $\chi_2 \rightarrow \chi_1e^+e^-$ (outside of CDC) • on-shell (two-body) • m(h) (0.5-4.0 GeV) in 0.1 GeV steps
- Background samples:

•
$$e^+e^- \rightarrow e^+e^-$$

• $e^+e^- \rightarrow \mu^+\mu^-$

Distribution of opening angle $\alpha_{\parallel}^{h'}$ $m(h) = 0.5 \,\text{GeV}$

Institute of Experimental Particle Physics (ETP)

Approach with Graph Neural Networks

Variable number of CDC hits \rightarrow utilize Graphs and Graph Neural Networks

Approach with Graph Neural Networks: Edge Classification

Classify True and False edges of the graph

GNN: Interaction Network

Interaction Network: Graph Neural Networks for Charged Particle Tracking on FPGAs (arxiv:2112.02048)

GNN: Interaction Network

Graph Neural Networks for Charged Particle Tracking on FPGAs (arxiv:2112.02048)

current input features:

- nodes: ρ , ϕ , TDC
- edges: $\Delta \rho$, $\Delta \phi$

Layer.Parameter	Param.Shape	Param #
R1.layers.0.weight	[30, 8]	240
R1.layers.0.bias	[30]	30
R1.layers.2.weight	[30, 30]	900
R1.layers.2.bias	[30]	30
R1.layers.4.weight	[2, 30]	60
R1.layers.4.bias	[2]	2
O.layers.0.weight	[30, 5]	150
O.layers.0.bias	[30]	30
O.layers.2.weight	[30, 30]	900
O.layers.2.bias	[30]	30
O.layers.4.weight	[3, 30]	90
O.layers.4.bias	[3]	3
R2.layers.0.weight	[30, 8]	240
R2.layers.0.bias	[30]	30
R2.layers.2.weight	[30, 30]	900
R2.layers.2.bias	[30]	30
R2.layers.4.weight	[1, 30]	30
R2.layers.4.bias	[1]	1

Total params: 3696

Institute of Experimental Particle Physics (ETP)

Edge Classification GNN Evaluation

Determine binary threshold using maximal F_1 score:

• purity =
$$\frac{IP}{TP+FP}$$

• efficiency = $\frac{TP}{TP+FN}$

•
$$F_1 = 2 \cdot \frac{purity \cdot enticiency}{purity + efficiency} = \frac{TP}{TP + (FP + FN)/2}$$

Using both TDC and ADC results in a

- Event classification efficiency of 94% and
- Event classification purity of 93%

on signal with early-phase 3 beam-background

evaluated on 1000 samples per mass

Institute of Experimental Particle Physics (ETP)

Approach with Graph Neural Networks: Trackfinding

Use Object Condensation (arXiv:2002.03605)

 \rightarrow Based on Isabel Haide: Improving ECL Clustering with Object Condensation

- \rightarrow Use nodes as input to Object Condensation (arXiv:2002.03605)
- \rightarrow Goal: predict track fitting parameters and find condensation points

- \rightarrow Use nodes as input to Object Condensation (arXiv:2002.03605)
- \rightarrow Goal: predict track fitting parameters and find condensation points

- \rightarrow Use nodes as input to Object Condensation (arXiv:2002.03605)
- \rightarrow Goal: predict track fitting parameters and find condensation points

 \rightarrow Use nodes as input to Object Condensation (arXiv:2002.03605) \rightarrow Goal: predict track fitting parameters and find condensation points

Start with very simple case: ${\it e^+e^-} \rightarrow \mu^+\mu^-$ no beam-background

Institute of Experimental Particle Physics (ETP)

Create Samples with Particle Gun:

- number of particles
 [1,9]
- PDG code [-11,11,-13,13]
- BGx0 and BGx1 early-phase 3
- not displaced
- θ = [30, 120]
- *p* = [0.5, 5] GeV
- cleanup: remove events where primary particles have less than 5 CDC hits

Create Samples with Particle Gun:

- number of particles
 [1,9]
- PDG code [-11,11,-13,13]
- BGx0 and BGx1 early-phase 3
- not displaced
- θ = [30, 120]
- *p* = [0.5, 5] GeV
- cleanup: remove events where primary particles have less than 5 CDC hits

Training including stereo layers:

- Trained on 12 000 samples
- Number of particles [1,9]
- Input features per node:
 x, y, TDC, ADC
- Predicting:

 $n_{\rm tracks} p_x, p_y, p_z$ This can be changed (so for example more focus on track finding efficiency or predicting only pt)

Object Condensation: BGx0 all Layers First Evaluation

Found Tracks	
All Tracks found	
(no duplicate/unmatched)	83.7%
Missing Tracks	
(no duplicate/unmatched)	9.0%
All Tracks and duplicate/un-	3.7%
matched	
Missing Tracks and	
duplicate/unmatched	3.6%

Object Condensation: BGx0 all Layers First Evaluation

Found Tracks	
All Tracks found	
(no duplicate/unmatched)	83.7%
Missing Tracks	
(no duplicate/unmatched)	9.0%
All Tracks and duplicate/un-	3.7%
matched	
Missing Tracks and	
duplicate/unmatched	3.6%

Calculate ϕ and p_t from p_x and p_y ($\Delta \phi$)_{*min,Event*} is the ϕ difference between the two nearest tracks per event:

$$(\Delta \phi)_{min, Event} = min(\text{for all i,j: } \phi_i - \phi_{j \neq i})$$

Object Condensation: BGx0 all Layers First Evaluation

Object Condensation: First Evaluation on early-phase3

BGx0 all Layers Training

Found Tracks	
All Tracks found	
(no duplicate/unmatched)	83.7%
Missing Tracks	
(no duplicate/unmatched)	9.0%
All Tracks and duplicate/un-	3.7%
matched Tracks	
Missing Tracks and	
duplicate/unmatched	3.6%

BGx1 early-phase3 only axial layer Training				
Found Tracks				
All Tracks found				
(no duplicate/unmatched)	73.8%			
Missing Tracks				
(no duplicate/unmatched)	16.0%			
All Tracks and duplicate/un-	7.4%			
matched Tracks				
Missing Tracks and				
duplicate/unmatched	2.8%			

BGx1 early-phase 3 relative pt resolution

Similar to resolution with BGx0

Summary and Outlook

Current Status

- Implemented Object Condensation for CDC Track Finding and testing BGx0 samples and BGx1 early-phase3 samples
- Evaluation Object Condensation Prediction
- Working on Object Condensation Truth Matching for Tracks

Outlook

e

- Implement Graph Building and Edge Classification Network on FPGA
- Data/MC comparison for Edge Classification
- Extend Object Condensation to predict Displaced Tracks
- Evaluate Object Condensation on Data/MC for Displaced Vertex Example

$$^+e^- o \Phi \gamma, \ \Phi o {K_{
m S^0}} {K_{
m L^1}}$$

Central Drift Chamber (CDC)

	_
	_
	_

(a) An axial wire layer - sense wires are parallel to the beamline

(b) A stereo wire laver - sense wires are skewed to the beamline (exaggerated)

CDC x-y view

- Sense wires are arranged around the beamline (z-axis) to measure charged particles
- z Information gathered from stereo layers
- Events with displacement $\rho >$ 16.0 cm start within the CDC

 \rightarrow Focus on track reconstruction using the CDC information

18/17 03/11/2022 Lea Reuter - lea.reuter@kit.edu: GNN-based Track and Vertex Finding Institute of Experimental Particle Physics (ETP)

300 2500 3000 7000 2000 6000 2500 ដ ភ្ល 1500 1000 5000 rad) Tracks / (0.04) 12000 12000 2000 500 (0.02 4000 pt. truth (GeVI) 3000 3000 Tracks Prediction: number of particles 500 using only axial hits 1000 0 -1.00 -0.75 -0.50 -0.25 0.00 input features 0.25 0.50 0.75 1.00 -0.4-0.20.0 0.2 0.4 x, y, TDC, ADC $p_{z, \text{pred}} - p_{z, \text{truth}}$ $\theta_{\rm nred} - \theta_{\rm truth}$ (rad) D_z truth • used p_x , p_y , p_z to

truth p distribution:

calculate theta

GNN Evaluation: *F*₁: Input Feature Studies

Determine binary threshold using maximal F_1 score: $F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall} = \frac{TP}{TP + (FP + FN)/2}$ input features: input features: input features: input features: $[\rho, \phi, TDC]$ $[\rho, \phi, ADC]$ $[\rho, \phi, TDC, ADC]$ $[\rho, \phi]$ Confusion matrix Confusion matrix Confusion matrix Confusion matrix Falce False False TUP TUE ALD. ~~ 44249 44913 46458 46501 36784 41499 40465 43741 7465 3414 5993 2760 TPR: 83.139 TPR: 92.409 TPR: 87.10 PR: 94.06% FN: 2.98% TP: 16.56% FN: 1.36% FN: 2.39% TP: 17.46% FN: 1.10% TP: 14.68% TP: 16.15% FNR: 16.87 NR: 7.60% FNR: 12.90 FNR: 5.94% 204076 206285 205621 204033 196459 5111 200510 6145 197931 TN: 79.00% 201164 TN: 80.29% 2869 TNR: 95.24% TNR: 97.51% TNR: 96.99 TNR: 98.59% FP: 2.04% FP: 1.15% FP: 3.92% TN: 78.429 TN: 80.039 FP: 2.45% EPR: 4.76% FPR: 2.49% FPR: 3.01% FPR: 1.41% 46610 203924 250534 46610 203924 250534 46610 203924 250534 46610 203924 250534 ACC: 93.10 ACC: 96.609 ACC: 95.16 ACC: 97.75% DR: 21.08% OR: 3.66% IISS: 6.90[°] DR: 10.97% FOR: 1.67% 1155: 3.40 DR: 13.18% FOR- 2 94% MISS: 4.84 DR: 6.16% FOR: 1.35% 4ISS: 2.25% Predicted Predicted Predicted Predicted $F_1 = 0.81$ $F_1 = 0.91$ $F_1 = 0.87$ $F_1 = 0.94$

GNN Evaluation per Mass

