

Feebly interacting particles in rare decays

Felix Kahlhoefer Belle II Germany Meeting 2023, KIT, 25 September 2023

Feebly-interacting particles

Progress in particle physics guided by paradigm of o(1) dimensionless couplings

- Any new particle to be discovered must be heavy
- Need high-energy colliders or look for indirect effects (e.g. rare decays)
- In spite of significant improvements in sensitivity we have no (conclusive) evidence for physics beyond the Standard Model
- Time to question our search strategy and look for places we may have missed
- Light particles could remain to be discovered, if they have very small interactions with Standard Model (SM) particles

Portal interactions

- Light particles must be gauge singlets
- They can only couple to gauge-invariant combinations of SM fields
 - Only 3 possible combinations with d < 3:</p>

$F^Y_{\mu u}$	Vector portal $(\dim = 2)$,
$H^{\dagger}H$	Higgs portal $(\dim = 2)$,
LH	Neutrino portal (dim $= 5/2$)

Portal interactions

- Light particles must be gauge singlets
- They can only couple to gauge-invariant combinations of SM fields
 - Only 3 possible combinations with d < 3:</p>

$$\begin{array}{ccc} F_{\mu\nu}^{Y} & & & \mathcal{L}_{\mathrm{int}} = \frac{\kappa}{2} V_{\mu\nu} F^{\mu\nu} & & & \text{Dark photon} \\ H^{\dagger}H & & & \mathcal{L}_{\mathrm{int}} = (H^{\dagger}H)(\lambda S^{2} + AS) & & & \text{Dark scalar} \\ LH & & & \mathcal{L}_{\mathrm{int}} = y_{ij}L_{i}HN_{j} & & & \text{Heavy neutral lepton} \end{array}$$

Batell et al., arXiv:0906.5614

Axion-like particles

At d = 3, gauge-invariant combinations of SM fields include the vector and axialvector fermion currents:

$$ar{\psi}\gamma_{\mu}\psi \qquad ar{\psi}\gamma_{\mu}\gamma_{5}\psi$$

- These currents can couple to a new gauge boson (Z')
- Attractive alternative: Derivative coupling to a pseudoscalar boson (d = 5)

$$\mathcal{L}_{\mathrm{int}} = rac{\partial_{\mu}a}{f_a} \bar{\psi} \gamma_{\mu} \gamma_5 \psi$$
 Axion-like particles

Batell et al., arXiv:0906.5614

OK, but why?

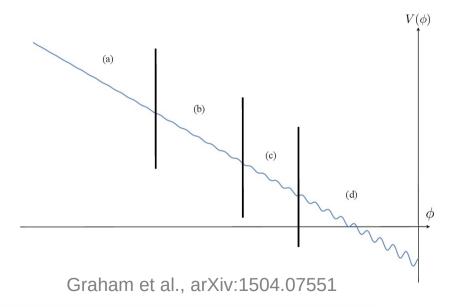
Theory:

- Need new particles to explain puzzling structure of the Standard Model (fine-tuning problems, large hierarchies, accidental symmetries)
- Experiment:
 - Particle-antiparticle asymmetry in the early universe
 - Non-zero neutrino masses
 - Dark matter
 - Experimental anomalies

considered a fine-tuning problem

Possible solution: Relaxion mechanism

 \rightarrow Dynamical selection of electroweak scale through non-trivial scalar potential

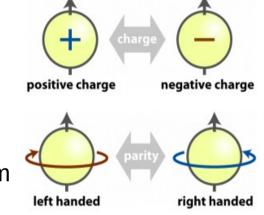

Implies existence of a light scalar (relaxion) coupled to the Higgs boson

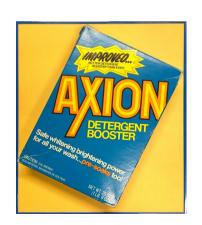
7

Felix Kahlhoefer Institute for Theoretical Particle Physics (TTP)

Theory example 1: Hierarchy problem

The smallness of the electroweak scale (compared to the Planck scale) may be





Theory example 2: Strong CP problem

- Strong interactions are expected to violate CP symmetry, leading to a neutron electric dipole moment (EDM)
- The fact that no neutron EDM is observed means that CP-violating effects must be extremely small

This fine-tuning is the strong CP problem

- The Peccei-Quinn solution to this problem assumes a new field with a potential that ensures CP-conservation at the minimum
- Central prediction: The existence of the QCD axion

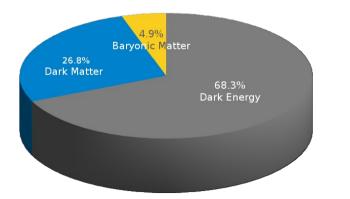
Experiment example 1: Neutrino masses

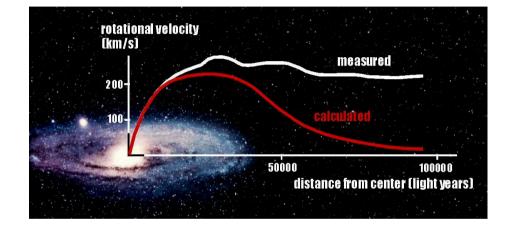
Neutrino oscillations require the existence of right-handed (sterile) neutrinos

Right-handed neutrinos could be very heavy (see-saw mechanism), very light (Dirac neutrinos) or anywhere in-between

Attractive possibility: GeV-scale right-handed neutrinos can explain particleantiparticle asymmetry of the Universe through decays into SM particles

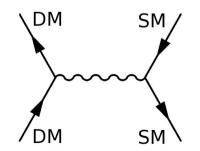
→ Heavy neutral leptons





Experiment example 2: Dark matter

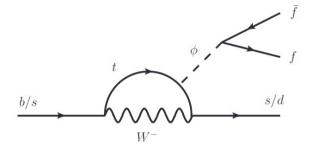
Motion of stars and galaxies require an additional gravitational potential from invisible mass



There must be about 5 times more dark than visible matter to explain observed amounts of structure in the present universe

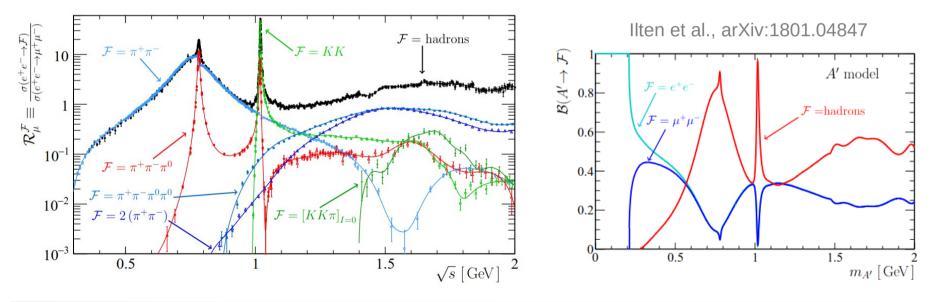
Dark matter mediators

- Predictive models of dark matter require a mechanism to produce DM in the early universe
- Essential ingredient: Non-gravitational interactions between DM and SM particles
- Strong constraints on interactions mediated by SM gauge and Higgs bosons
- Feebly-interacting particles can act as mediator of DM interactions
- Example: Dark fermion charged under U(1)'
 - → dark photon mediator

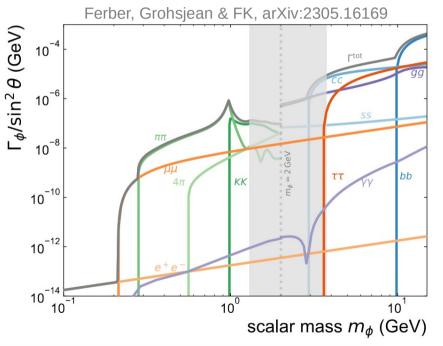


Phenomenology: Production

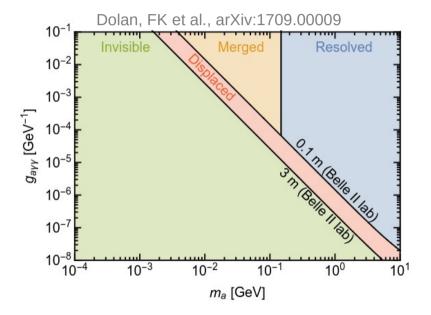
GeV-scale FIPs can be produced in rare meson decays


- Two main contributions:
 - Loop-induced decays (e.g. penguin diagrams)
 - → Most relevant for (pseudo)scalars with large couplings to top quarks
 - Mixing-induced decays (SM particle replaced by FIP)
 - → Heavy neutral lepton: $\nu \rightarrow N$ (e.g. $D^+ \rightarrow K^0 e^+ N$)
 - → Axion-like particles: $\pi^0 \rightarrow a$ (e.g. $K^+ \rightarrow \pi^+ a$)
 - → Dark photons: $\gamma \rightarrow A'$ (e.g. $\pi^0 \rightarrow \gamma A'$)

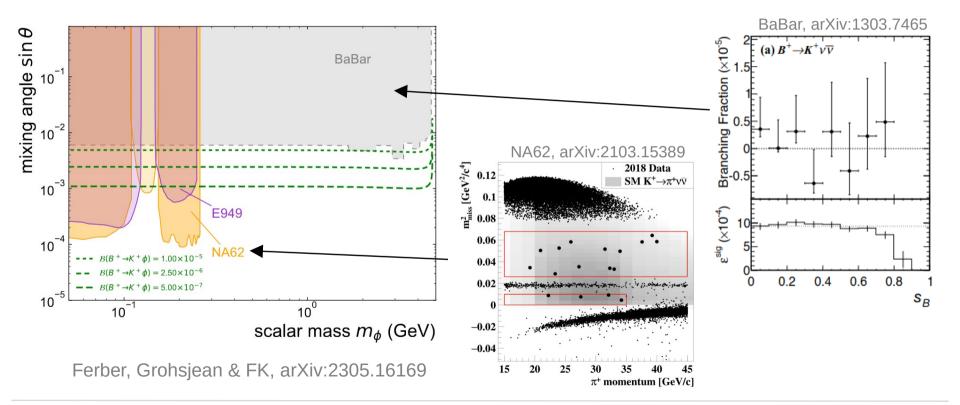
Phenomenology: Decays


- Calculation of decay modes for GeV-scale FIPs generally hard problem
- Exception: Dark photon decay modes extracted from R ratio

Phenomenology: Decays


- No direct measurements possible for light (pseudo)scalars
 - \rightarrow Substantial theory uncertainties
- Possible solutions:
 - Scattering (e.g. $\gamma\gamma^* \rightarrow \pi\pi$)
 - Use chiral perturbation theory with couplings fitted to meson decays

Phenomenology: Lifetime


- In addition to the final state, the experimental signature depends decisively on the FIP lifetime
 - Short lifetime \rightarrow prompt decayIntermediate lifetime \rightarrow displaced decayLong lifetime \rightarrow missing energy

Note: Missing energy signatures also arise from FIPs decaying into DM

$B \rightarrow Kvv$ at Belle II

- Best-fit branching ratio: $(B^+ \rightarrow K^+\nu\nu) = (2.4 \pm 0.7) \times 10^{-5}$
 - \rightarrow Somewhat larger than SM prediction
- Could the excess be due to a scalar FIP?
- Largest pull in narrow range of q²_{rec}
- Resolution of q²_{rec} for inclusive tag not publicly available
 - → Dedicated analysis highly welcome!

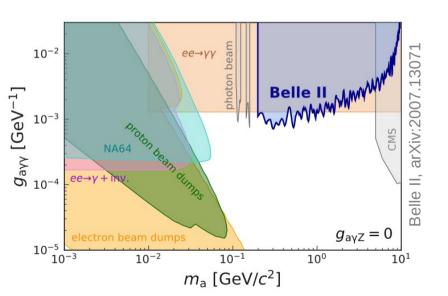
See sensitivity study in Ferber et al., arXiv:2201.06580

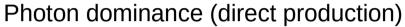
$B \rightarrow Kvv$ at Belle II (notes)

FIPs may also give rise to broad distribution of q²

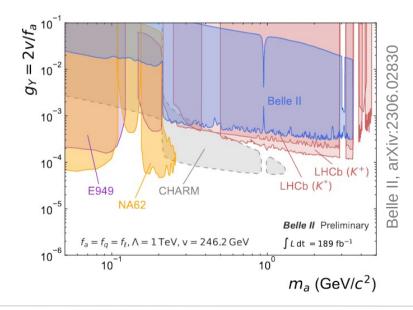
Example 1: Dark scalar with large invisible width (i.e. coupling to DM)

- Example 2: Dark scalar with $m_s > m_B m_K$
 - \rightarrow Rare B decay through off-shell dark scalar
 - \rightarrow Invariant momentum distribution similar (but not identical) to B \rightarrow Kvv

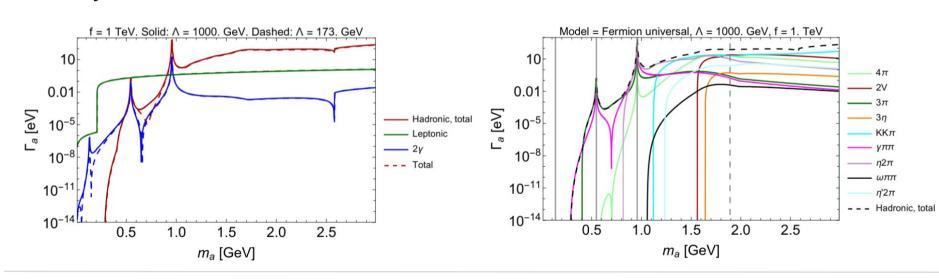

Bird et al., arXiv:hep-ph/0601090


Model-independent analysis (or details for recasting) required

Example 2: Long-lived axion-like particles

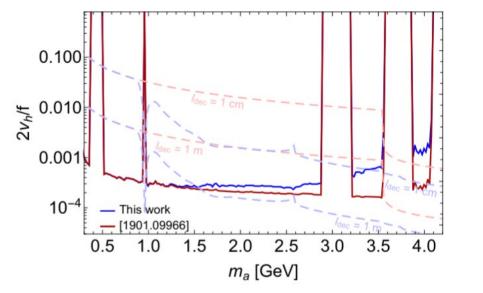


Two scenarios:

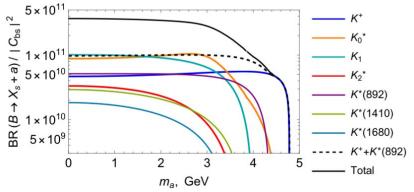


Axion-like particle decays modes

- CP conservation forbids decay models $a \rightarrow \pi\pi$ or $a \rightarrow KK$
- Common assumption: Leptonic decay modes dominate Dolan, FK et al., arXiv:1412.5174
 Only true below 1 GeV
 FK, Garcia, Ovchynnikov and Zaporozhchenko (in preparation)



Improved constraints


Accurate calculation leads to suppressed branching into leptons

Constraints from LHCb weakened significantly.

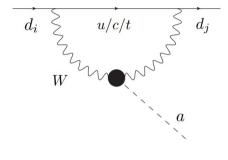
FK, Garcia, Ovchynnikov and Zaporozhchenko (in preparation)

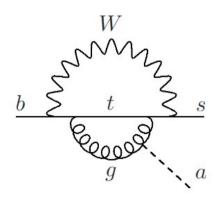
- What about Belle II?
- Opportunity: Look for exclusive B decays and new final states

Gluon and W boson dominance

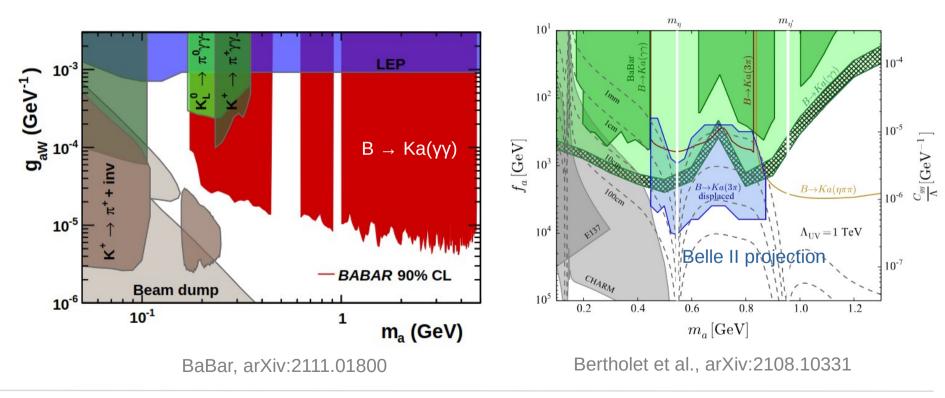

ALPs coupled to gluons or W bosons can also be produced in *B* meson decays

However, they do not decay into leptons at all!

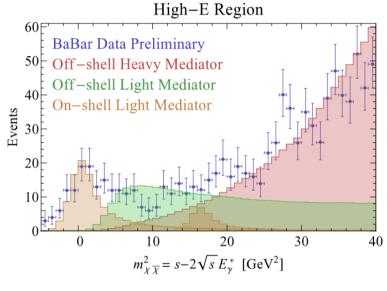

W boson coupling: Dominant decay into photons


Gluon coupling:

Dominant decay into hadrons

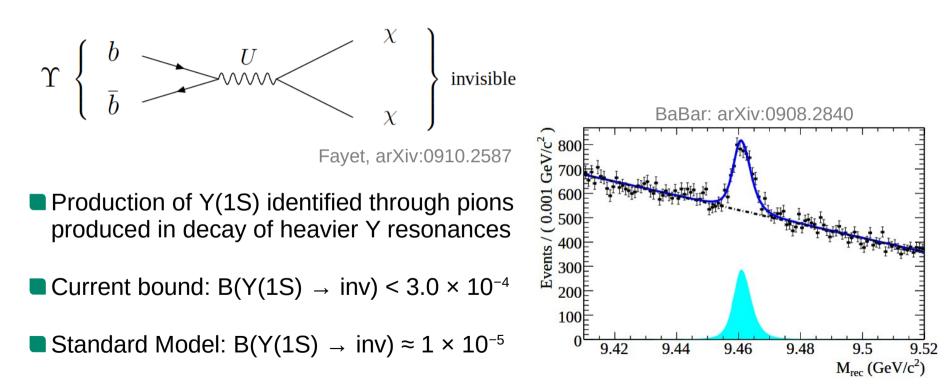


New final states in rare B decays



Example 3: Dark photons in rare decays

- Sensitivity to GeV-scale dark photons dominated by couplings to leptons (e.g. e⁺ e⁻ → A' γ)
- What if the dark photon is too heavy to be produced on-shell?
 - \rightarrow Substantial loss in sensitivity


Belle II projections studied in Bernreuther et al., arXiv:2203.08824

Essig et al., arXiv:1309.5084

Radiative Y decays

How do GeV-scale FIPs get their mass?

Attractive possibility: Dark Higgs mechanism

Complex dark scalar obtains vev & breaks U(1)' gauge symmetry

Gauge interactions: Dark photon mass

Yukawa interactions: Dark matter mass

Mixing between dark Higgs boson and SM Higgs boson:

$$\begin{array}{l} h \to \cos \theta \, h + \sin \theta \, \phi \\ \phi \to -\sin \theta \, h + \cos \theta \, \phi \end{array} \qquad \qquad \theta \approx \frac{\lambda_{h\phi} \, v \, w}{m_h^2 - m_\phi^2} \end{array}$$

Dark Higgs bosons at colliders

mixing angle sin θ

+10⁻³

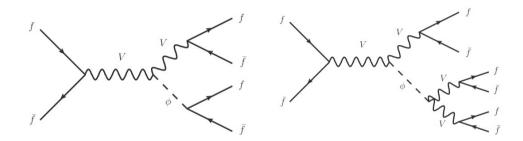
 10^{-4}

-5 10

ATLAS

Dark Higgs bosons at colliders

LZ (2022)


Higgs (signal strength)

DM mass (GeV)

10

Ferber, Grohsjean & FK, arXiv:2305.16169

Consequence 1: New collider signatures

Consequence 2: New DM interactions

- Annihilation (DM DM \rightarrow SM SM)
- Scattering (DM SM \rightarrow DM SM)

section (cm²)

JM-nucleon cross

 10^{-38}

10

10⁻⁴²

 10^{-44}

10⁻⁴⁶

 10^{-48}

10

BBN

> 0.1 s

Fixedtarget

Interplay between collider searches and dark matter phenomenology

LHCb

 $m_{\rm DM} = 2m_{\phi}$

W = 100 GeV

Belle II

 10°

Higgs (bounds

10

Conclusions

- Feebly interacting particles
 - have masses at the GeV scale and tiny couplings
 - can have spin 0 (dark scalars, ALPs), ½ (heavy neutral leptons) or 1 (dark photons)
 - may address theoretical fine-tuning problems and experimental evidence for new physics
 - are produced in rare meson decays and decay into variety of final states

Belle II offers the ideal environment to perform a broad range of searches for FIPs and provide model-independent constraints