Measurements of inclusive $B \rightarrow X_u I v$ decays with hadronic tagging

Martin Angelsmark, Florian Bernlochner, Lu Cao, Merle Graf-Schreiber, Marcel Hohmann, Munira Khan, **Tommy Martinov**, Kerstin Tackmann, Phillip Urquijo

Introduction

- Semi-leptonic decays
 - $\begin{array}{ccc} \circ & B \to X_u \, I \, v \\ \circ & B \to X_c \, I \, v \end{array}$
- Two ways to measure |V_{ub}|
 - Exclusive decays
 - $\blacksquare \quad B \to \pi \: | \: v, \: B \to \rho \: | \: v \: \dots$
 - Inclusive decays

$$= 10^{-3}$$
 PDG incl.

$$\begin{split} |V_{ub}| &= (4.13 \pm 0.12^{+0.13}_{-0.14} \pm 0.18) \times 10^{-3} \quad \text{PDG incl.} \\ |V_{ub}| &= (3.70 \pm 0.10 \pm 0.12) \times 10^{-3} \quad \text{PDG excl.} \end{split}$$

DESY.

Theory

• Exclusive decays depend on form factors

$B \rightarrow \pi I v$

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

• Inclusive decays

- Based on Heavy Quark Expansion
- Large $\mathbf{B} \rightarrow \mathbf{X}_{c} \mathbf{I} \mathbf{v}$ background $(|V_{cb}|^{2} / |V_{ub}|^{2} \sim 100)$
- \rightarrow cuts in phase space (ex: M_x < 1.7 GeV)
- $\circ \quad \rightarrow \textbf{HQE breaks down}$
- Sensitivity on Shape Function(s)
 - Leading-order SF extracted from $B \rightarrow X_s \gamma$
- Different models: BLNP, DFN, GGOU...
- Weak Annihilation ?

• Inclusive $B \rightarrow X_u I v$ partial Branching Ratio measurement and extraction of $|V_{ub}|$

• Inclusive $B \rightarrow X_{II}$ I v differential Branching Ratio measurement

• Inclusive Weak Annihilation $B \rightarrow X_{_{II}} I v$ measurement

• All 3 analyses performed with the Full Event Interpretation hadronic tag

Event reconstruction Full Event Interpretation

- 3 types of tagging
 - Inclusive (untagged)
 - Semi-leptonic
 - Hadronic
- B_{tag} reconstructed in its hadronic decay channels
 - Accurate information about the event
 - Background suppression
- Lepton reconstructed
- Neutrino \rightarrow missing energy
- Hadronic system X → rest-of-event
- 3 important variables: **M**_x, **q**², **E**_I

e

 π

Modelling

- Inclusive $\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{u}} \mathbf{I} \mathbf{v}$: signal
 - Combine resonant (π, ρ, ω, η, η') and non-resonant contribution (BLNP, DFN)
 - Hybrid model
- Inclusive $\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{c}} \mathbf{I} \mathbf{v}$: main background
 - No model for non-resonant contribution
 - \rightarrow Sum of resonant modes (D, D*, D**) and "gap" modes
- Other backgrounds
 - $Y(4S) \rightarrow q\overline{q}$ (continuum)
 - Fake/secondary leptons
- Weak Annihilation contribution
 - Dedicated measurement

DESY.

$\mathbf{B} \rightarrow \mathbf{X}_{u}$ I v partial Branching Ratio

Background suppression

Example: lepton energy

Pre-classifier

Post-classifier

- Multivariate classifier
 - **Neural Networks**: distinguish signal from background sources using training features (missing mass, number of kaons and pions...)
 - \circ Signal efficiency = 37%
 - Background retention = 2%

|V_{ub}| extraction

- Extract partial Branching Fraction
- Binned fit
- 3 templates
 - Signal: $B \rightarrow X_u \mid v$
 - Main background: $B \rightarrow X_c I v$
 - Other backgrounds (fake/secondary leptons + continuum)
- Example: E^B_I with 16 bins from 1.0 to 2.7 GeV
- Different fitted variables + different phase space regions
- Validation: toys, linearity check

$\mathbf{B} \rightarrow \mathbf{X}_{u}$ I v differential Branching Ratio

Differential B \rightarrow **X**_u I v measurement

 Shape information on kinematic variables → crucial to evaluate models and extract HQE parameters

- Subtract background using fitting procedure
 - Resolution is key: |E_{miss} p_{miss}| cut for example
- Unfold signal yields
 - Next step, work in progress

$\mathbf{B} \rightarrow \mathbf{X}_{u}$ I v via Weak Annihilation

Weak Annihilation

- Weak Annihilation contribution enters inclusive $\mathbf{B} \rightarrow \mathbf{X}_{u} \mathbf{I} \mathbf{v}$ modelling at $O(1/m_{b}^{3})$
 - Not included in most available $B \rightarrow X_{\mu} I v$ models
 - Poorly understood theoretically
 - Sub-leading but **sizeable uncertainty** in inclusive $|V_{ub}|$ extraction
 - Expected to become more important as experimental uncertainty and other modelling uncertainties shrink
- One attempt at a direct measurement at CLEO

○ Γ_{WA} / $\Gamma_{b\rightarrow u}$ < 7.4% at 90% C.L.

- Soft hadronic system
- → Weak Annihilation visible at high q²/El

Weak Annihilation

- Shape of peak is poorly known
 - $\label{eq:scan} \begin{array}{ll} \to \mbox{ scan a range of models built} \\ \mbox{ from off-shell W} \end{array}$
 - \circ Peaks in q² distribution of different widths around $m_{\rm B}^{\ 2}$
- Goal is to **extract a limit on WA** contribution
- Fitting procedure set up, checks in control regions

OUTLOOK AND CONCLUSIONS

Signal modelling issues

- No ideal model
 - **DFN**: outdated
 - GGOU: large discrepancy between model predictions and experimental results observed → new version in preparation
 - BLNP: various issues spotted
 - Negative hybrid weights
 - Excess of events near kinematical boundaries
 - Other models considered not suitable by theory community (DGE, ADFR)
- In contact with Keri Vos (Maastricht)
 - Possible switch to DFN

Summary

• Status of analyses

- Most of the technology in place
- Finalising the fitting procedure
- Looking at data-MC agreement in side-bands

Outlook

 \circ Sensitivity projections for inclusive $|V_{ub}|$

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ inclusive					
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

THANK YOU FOR YOUR ATTENTION !

Preselection

• Lepton selection

- BDTe > 0.9 or muonID_noSVD > 0.9
- dr < 1 cm
- | dz | < 3 cm
- nCDCHits > 0
- thetaInCDCAcceptance
- correctBremsBelle for electrons

• Standard FEI selections

- M_{bc} > 5.27 GeV
- -0.15 < ΔE < 0.10 GeV
- sigProb > 0.01
- cosTBTO < 0.9
- Best tag candidate selection: highest FEI tag probability
- BCS: Highest lepton momentum

• ROE nominal mask

- Track cuts
 - dr < 1 cm
 - | dz | < 3 cm
 - nCDCHits > 0
 - thetaInCDCAcceptance
 - CurlTrackTagger(mva)
- Cluster cuts, regions: forward/barrel/backward
 - p_t > 0.02 / 0.03 / 0.02 GeV
 - clusterZernikeMVA > 0.35 / 0.15 / 0.40
 - clusterTiming < 200</p>

• J/ψ and photon conversion vetoes

- Combine signal lepton with oppositely charged tracks
- \circ J/ ψ µµ: 3.07 < M_{uu} < 3.12 GeV
- J/ ψ ee: 3.02 < M_{ee} < 3.13 GeV

$$\circ$$
 γ_{ee} : M_{ee} < 0.04 GeV

Corrections Modelling

- **Branching fractions** $(B \rightarrow X_{u} | v, B \rightarrow X_{c} | v, D \rightarrow X | v)$
- Form Factor: eFFORT for $B \rightarrow X_u \mid v$, Hammer for $B \rightarrow X_c \mid v$
 - Reweighting:
 - $\blacksquare \quad B \to \pi, \, \rho, \, \omega, \, I \; v : BCL$
 - $\blacksquare \quad B \to \eta^{(`)} \ I \ v: ISGW2 \to LCSR$
 - $\blacksquare \quad B \to D / D^* | v: BGL \to \underline{BLPRXP}$
 - $\blacksquare \quad \mathsf{B} \to \mathsf{D}^{**} \mathsf{I} \mathsf{v}: \mathsf{BLR} \mathsf{(LLSW)}$
- Hybrid weights

- **Tagging**: MC15 corrections
- Lepton ID: MC15 tables
- Kaon ID
- K_s efficiency
- Slow π efficiency
- **Continuum** reweighting

- Branching fractions
- Form factor variations
- Inclusive model parameter variations
- γ_s variations
- **f**^{+-/00}

- **Tagging**: MC15 corrections
- Lepton ID: MC15 tables
- Kaon ID
- K_s efficiency
- Slow π efficiency

Selections

• Lepton selections

• Tag-side B selections

• **Rest-of-Event** selections

- Multivariate (Machine Learning) selections
 - **Neural Networks**: distinguish signal from background sources using training features (missing mass, number of kaons and pions...)
 - \circ Additional procedure to reduce correlation between NN output and EI, q2, M_y

Branching ratio extraction Pyhf

- Extract partial Branching
 Fraction
- **Binned fit**, 1 nuisance parameter per systematic source
- 3 templates
 - $\circ \quad \text{Signal: } B \to X_{_{U}} I v$
 - Main background: $B \rightarrow X_c I v$
 - Other backgrounds (fake/secondary leptons + continuum)
- ⇒ 1 POI + 165 NPs
- Example: E₁^B with 16 bins from 1.0 to 2.7 GeV
- Sample: benchmark MVA cut

Correlation matrix Post-fit

DESY.

Page 27

Signal extraction Branching fraction

- Branching fraction
 - Optimise MVA cut

$$\frac{\Delta \mathrm{BF}(E_{\ell}^B > 1 \mathrm{GeV})_{\mathrm{Asimov}}}{\sqrt{\sigma_{\mathrm{stat}}^2 + \sigma_{\mathrm{syst}}^2}}$$

Workflow ready, in validation

Number of signal events extracted from fit

$$\Delta \mathscr{B} \left(B \to X_{u} \mathscr{C}^{+} \nu_{\mathscr{C}}; \operatorname{Reg.} \right) = \frac{\widehat{\eta}_{\operatorname{sig.}} \varepsilon_{\Delta \mathscr{B}(\operatorname{Reg.})}}{4 \left(\varepsilon_{\operatorname{tag.}} \cdot \varepsilon_{\operatorname{sel.}} \right) \cdot N_{BB}}$$

$$\operatorname{lepton} = e/\mu, \operatorname{pair of B mesons} \longrightarrow 4 \left(\varepsilon_{\operatorname{tag.}} \cdot \varepsilon_{\operatorname{sel.}} \right) \cdot N_{BB}$$

$$\varepsilon_{\operatorname{tag.}} \cdot \varepsilon_{\operatorname{sel.}} = \frac{N_{\operatorname{sig.}}^{\operatorname{sel.}}}{N_{\operatorname{gen.}}^{\operatorname{tot.}}} \operatorname{independent to} \operatorname{detector effects}$$

Signal modelling issues **BI NP**

- Issues spotted in BLNP model
 - Negative hybrid weights with new input Ο parameter values
 - Setting them to 0 leads to slight over-estimation of BR
 - Excess of events near kinematical boundaries \bigcirc
 - M_v spectrum Ο
 - E, endpoint Ο

- In contact with Keri Vos (Maastricht)
 - Possible switch to DFN \bigcirc

· Very large deviation between the old BLNP (red) and current one (black).

SIMBA

- SIMBA
 - $\circ~$ Extract various parameters (m_b, CKM matrix elements...) by fitting B \to X_s γ and B \to X_u I v

