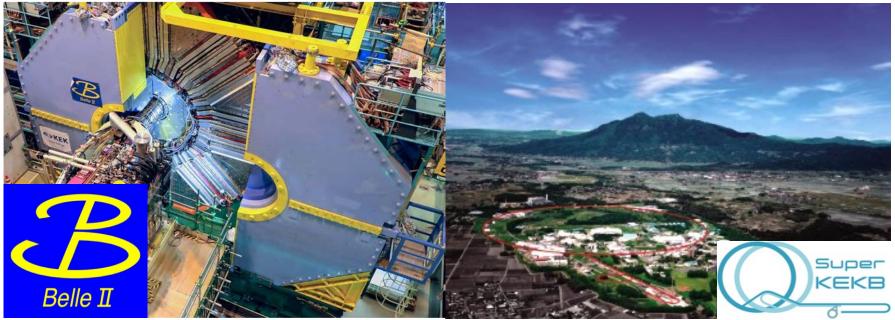


UNIVERSITÀ DEGLI STUDI DI TRIESTE Dipartimento di Fisica Department of Physics



Istituto Nazionale di Fisica Nucleare SEZIONE DI TRIESTE

Belle II experiment: status and prospects

Lorenzo Vitale – Univ. & INFN Trieste, Italy On behalf of the Belle II Collaboration 8th ICNFC 2019, Crete, Greece, 2019.08.21-29

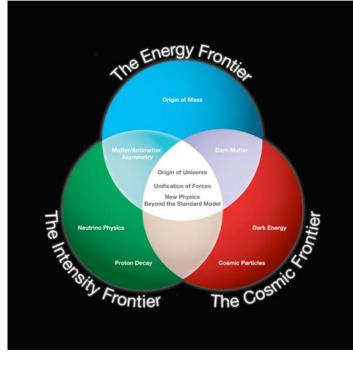
Talk outline

• Introduction:

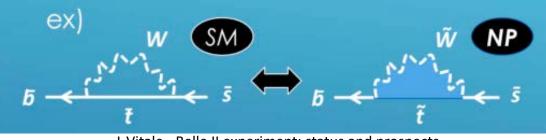
intensity frontier, flavor physics, B-factories

- Collider & Detector = Luminosity & Background challenge*
- Highlights from first physics run spring 2019
 Detector performance
 First results**
- Prospects

See also:


*P. Bambade "The SuperKEKb/BELLE II as a demonstrator of future colliders"
**P. Goldenzweig "First look at CKM parameters from early Belle II data"
**I. Komarov "Dark Sector Physics with Belle II: first results and prospects"

Intensity Frontier & Flavor Physics


Belle II is a leading **Flavor Physics** experiment at the **Intensity Frontier**

In **three fold approach** of near-mid term particle physics, Flavor Physics explores its goals with highest reachable intensity, being sensitive to New Physics - Beyond the Standard Model –

up to the TeV scale in loop diagram

Typical example: a new particle that may appear in a loop diagram can deviate the related observables from the SM predictions:

Flavor Physics to BSM

Widely endorsed approach

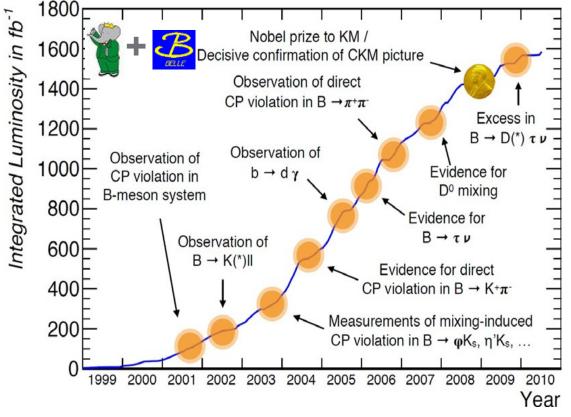
e.g. European Particle Physics Strategy Update 2018-2020 Summary talk from Zoccoli & Gavela Granada, 2019 May

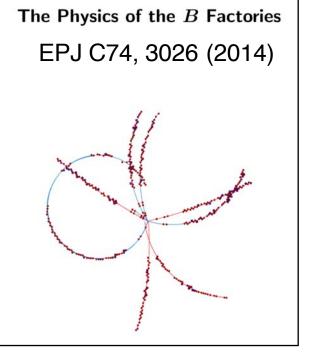
Flavor Physics → BSM

- EW Hierarchy... driven by the top in SM
- Strong CP problem
- Origin of weak CP and matter-antimatter asymmetry
- Flavour puzzle (quarks, charged leptons, neutrinos)

Flavour is the usual graveyard of BSM electroweak theories

16/5/19


LHCb is the other leading Flavor Physics experiment


Belle II complements and competes with LHCb: similar goals, different e⁺e⁻ environment

European Strategy

e⁺e⁻ B-factory legacy

Belle II collects the inheritance of previous successful experiments at the e⁺e⁻ B-factory: BaBar@PEPII and Belle@KEK, in total 1.6ab⁻¹

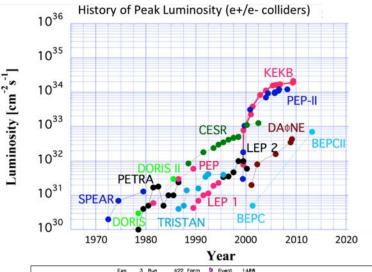
Success culminated in 2008

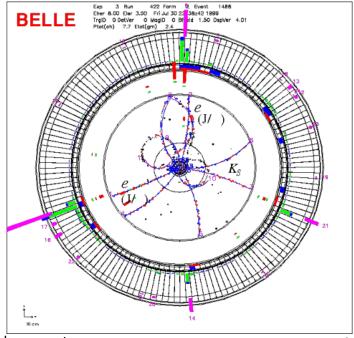
© The Nobel Foundation Photo: U. Montan Makoto Kobayashi © The Nobel Foundation Photo: U. Montan

Toshihide Maskawa

e⁺e⁻ B-factory: keys of the success

Colliders performance

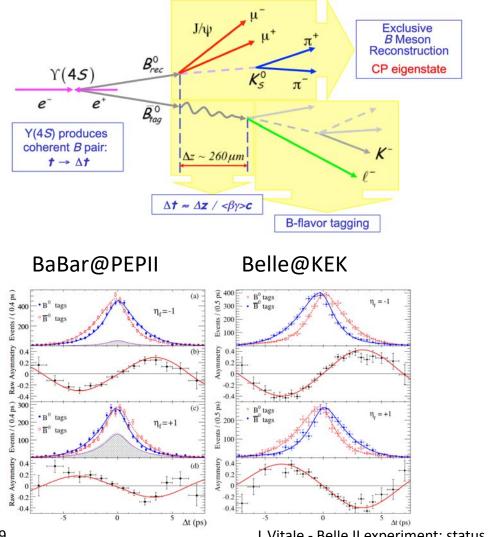

Endless order-of-magnitude improvements in luminosity But also long term steady operations and machine background control


e⁺e⁻ clean initial state

Coherent, well defined, without additional interactions allowing low physics backgrounds, high trigger efficiency, kinematic constrains

Detector performance

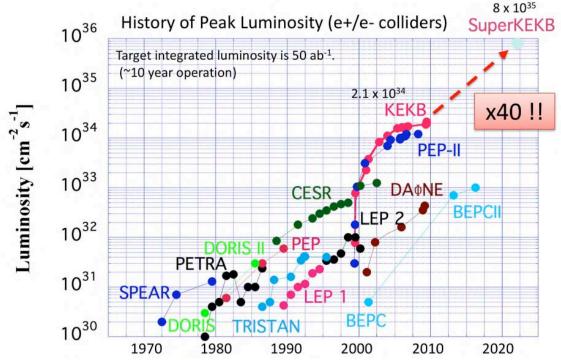
Precise, efficient, fast, hermetic - as much as possible – in all aspects: Tracking, Vertexing, Particle ID, Neutral, DAQ



An example: Time Dependent CP Violation from discovery to precision measurements

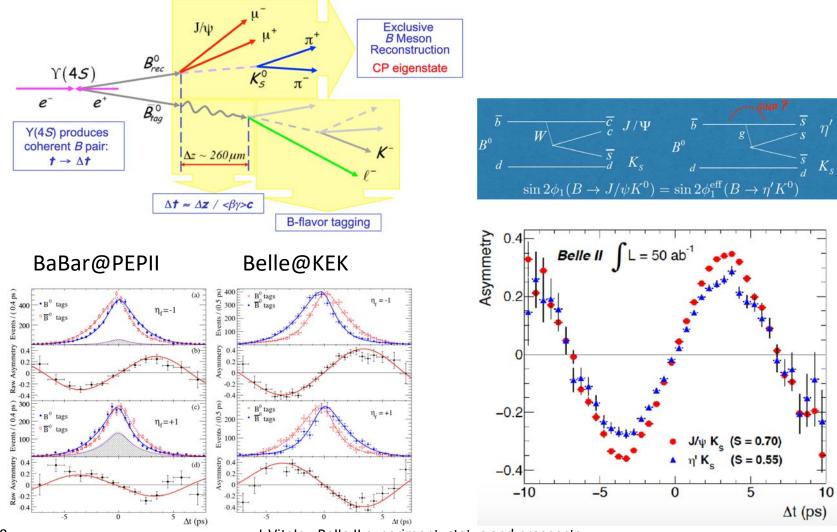
Asymmetric beam energies allow measurement of vertex separation:

It allows to see time dependent CPV by interference between decay and mixing



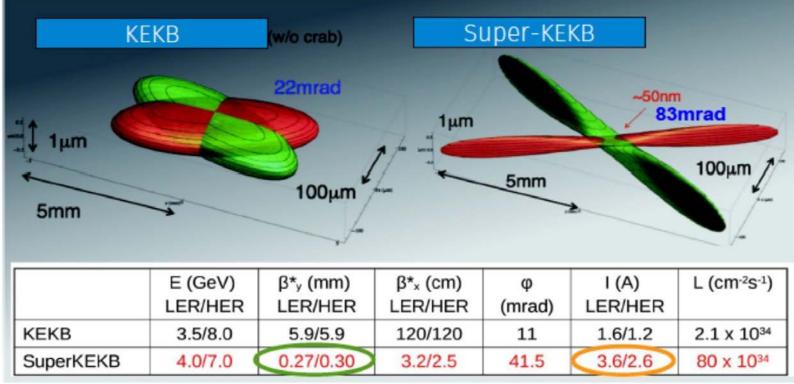
So why another e⁺e⁻ B-factory?

Still several goals can be achieved, the among others:


- Search/Limits of/on New Physics Beyond Standard Model
- Precision measurements of CKM matrix elements
- CPV: TD in B decays, direct
- Rare or forbidden B,D, τ decays
- Dark sector searches

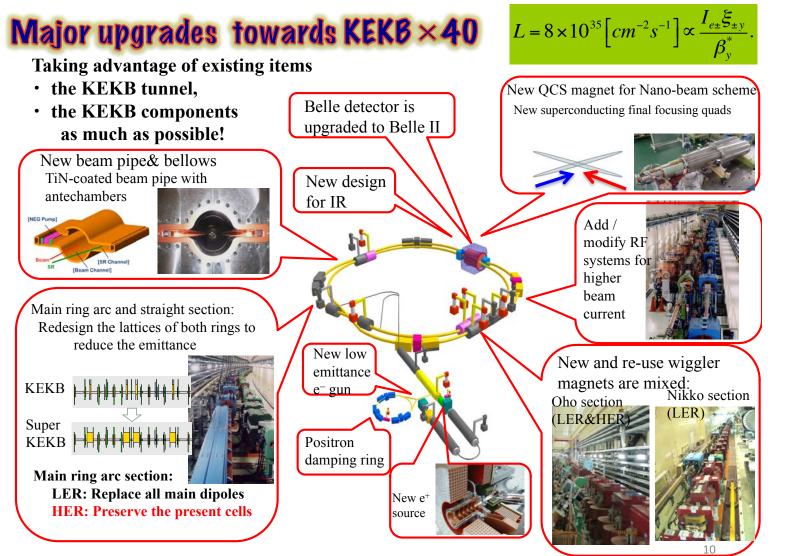
Belle II & SuperKEKB can raise the challenge with an increase of peak luminosity x40 !!

Time Dependent CP Violation at 50 at-1 $J/\psi Ks$ vs $\eta' Ks$


Asymmetric beam energies allow measurement of vertex separation: It allows to see time dependent CPV by interference between decay and mixing

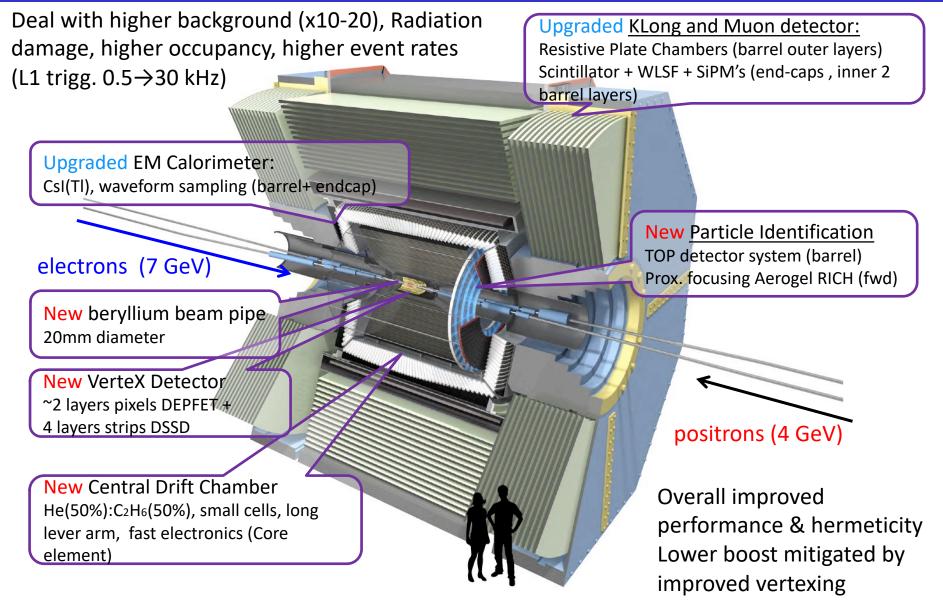
L.Vitale - Belle II experiment: status and prospects

SuperKEKB: how to gain x40?


 A x20 gain from "nano beam" scheme, proposed by P. Raimondi for SuperB: Beam size at interaction from (100x2) μm² KEKB to (10,000x50) nm² SuperKEKB Lower emittance & beta*, higher crossing angle, large Piwinski angle
 Another x2 gain by increasing beam currents

factor 20

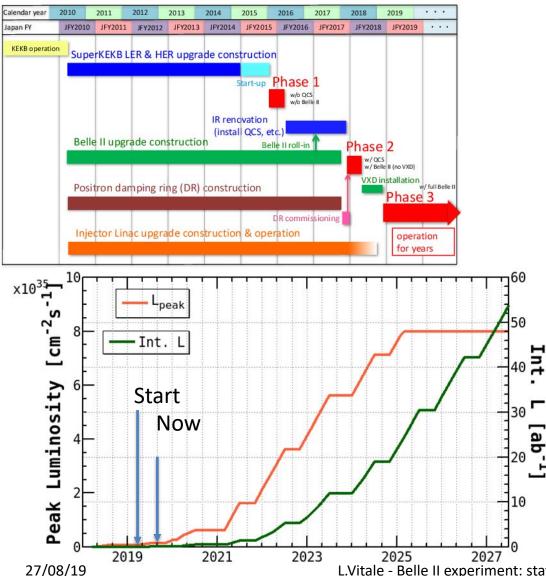
factor 2-3


SuperKEKB: mayor upgrade

Change beam energies to solve the problem of short LER lifetime

From Y. Funakoshi, IAS2017

Belle II Detector


Belle II international collaboration

from **II2** institutions in 26 countries

After construction & commissioning runs: Physics run (started in Spring 2019)

SuperKEKB/Belle II schedule

Phase 1: Optics Commissioning Dedicated detectors for background studies No collisions, no Belle II Brand new 3 km positron ring. Feb-June 2016

Phase 2: Pilot run First Collisions (0.5 fb^{-1}). Belle II w/o VXD (just a sector) Superconducting Final Focus, add positron damping ring, April 27-July 17, 2018

Phase 3: \rightarrow Physics run with Full **Belle II Detector**

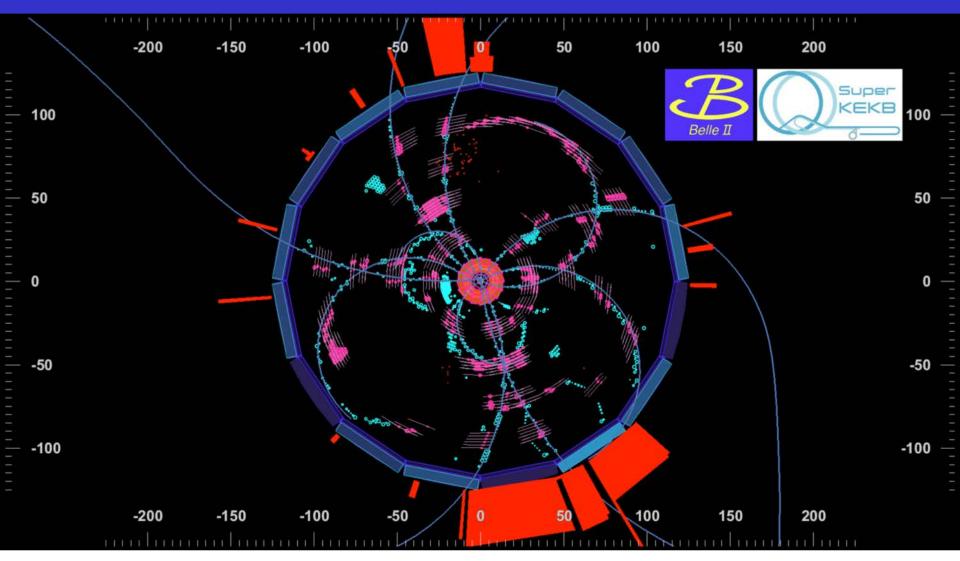
Just started 1st run March 27-July 1st, 2019

ab⁻¹

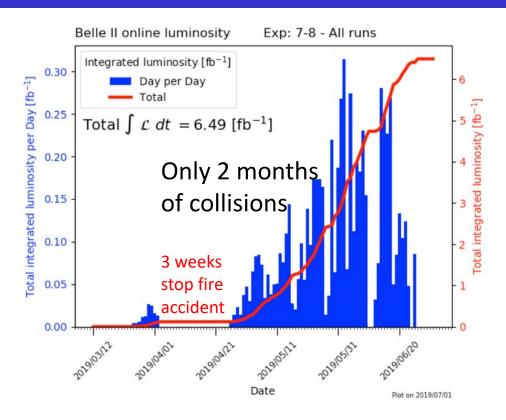
Belle II/SuperKEKB Phase 3 Goals

Early <u>aims</u>: Resolve the problems uncovered in the Phase 2 pilot run. Demonstrate SuperKEKB <u>Physics</u> running with acceptable backgrounds, and all the detector, readout , DAQ and trigger capabilities of Belle II including tracking, electron/muon id, high momentum PID, and especially the *ability to do time-dependent measurements needed for*

CP violation.



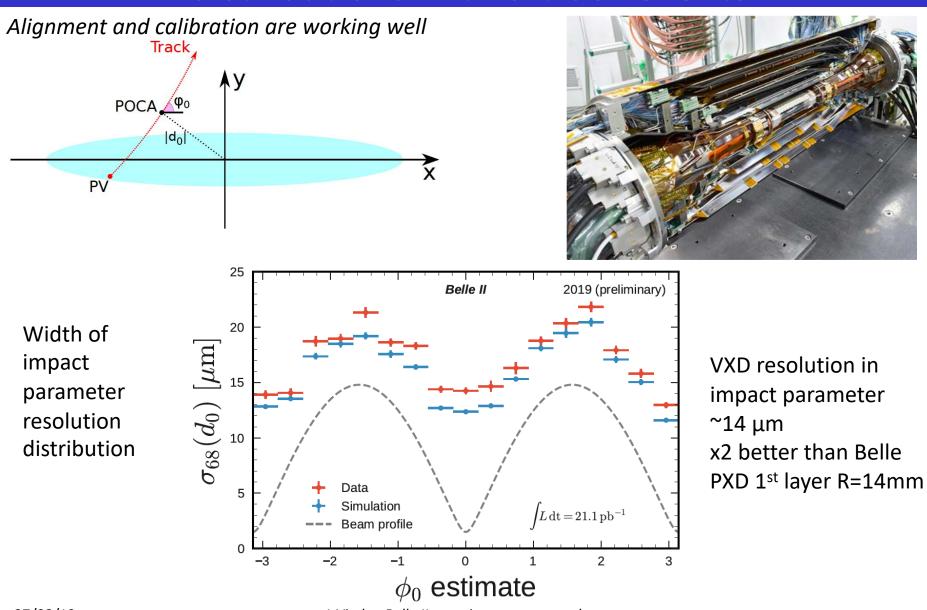
Belle II VXD ~6 layers installed on Nov 21, 2018 PXD L1 & two ladders of L2 SVD (4 layers)


Carry out <u>dark sector</u> searches/measurements as well. Long term: Integrate the world's largest e⁺e⁻ data samples and observe or constrain New Physics. From T. Brodwer, LP 2019

27/08/19

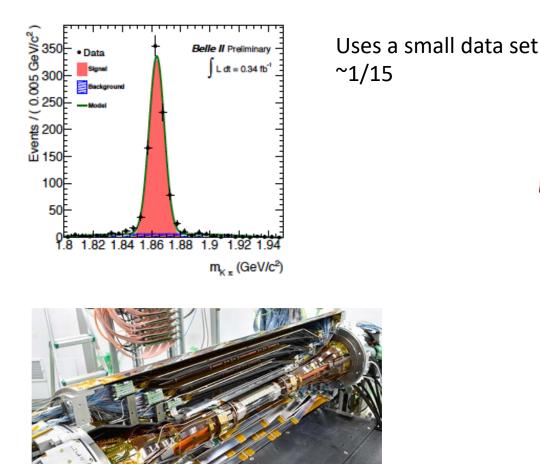
1st physic run - 1st B-B like event

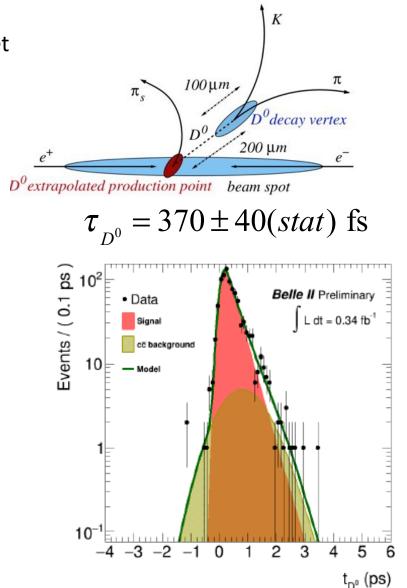
First run, Spring 2019, 3 2 months


Some issues solved e.g. continuous injection works well Challenge: keeping bkg under control Beam abort crucial Progressively squeezing β_y^* to increase L

 L_{peak} (in physics) ~6 x 10³³/cm²/s β_y^* =3mm

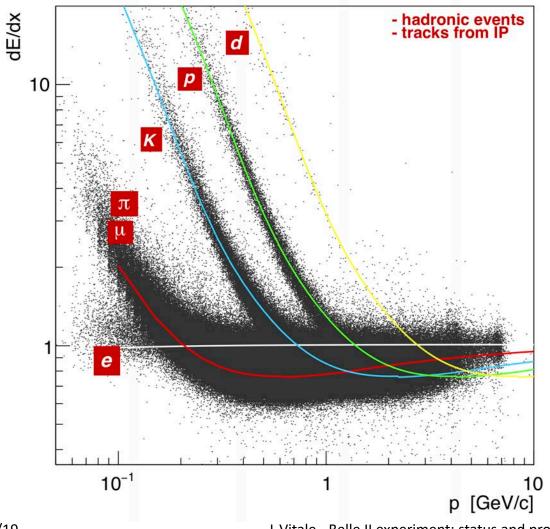
 $\label{eq:Lpeak} L_{peak}(det \mbox{ OFF}) ~1.2 \ x \ 10^{34}/cm^2/s \ \beta_y \ ^*=2mm \ Close \ to \ PEP-II \ best, \ but \ bkgs \ X3 \ too \ large \ to \ turn \ on \ Belle \ II$


Parameter	Achieved	Target	
I _{LER} (max)(A)	0.880	2.6	
I _{HER} (max)(A)	0.940	3.6	
β _y * (mm)	2	0.3	
# bunches	1576	2364	
L _{peak} (cm ⁻² s ⁻¹)	6.1 x 10 ³³	8 x 10 ³⁵	
L(det OFF)	12 x 10 ³³		


VXD resolution in impact parameter distributions in two-track events

L.Vitale - Belle II experiment: status and prospects

D⁰ lifetime: demonstration of VXD performance

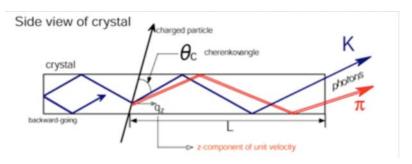


19

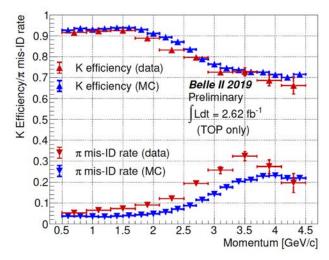
dE/dx in CDC

CDC-dE/dx distribution and predictions

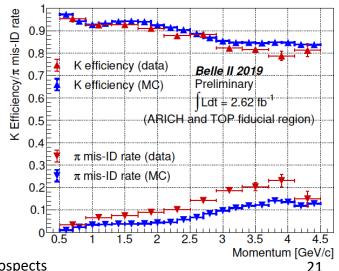
PID performance

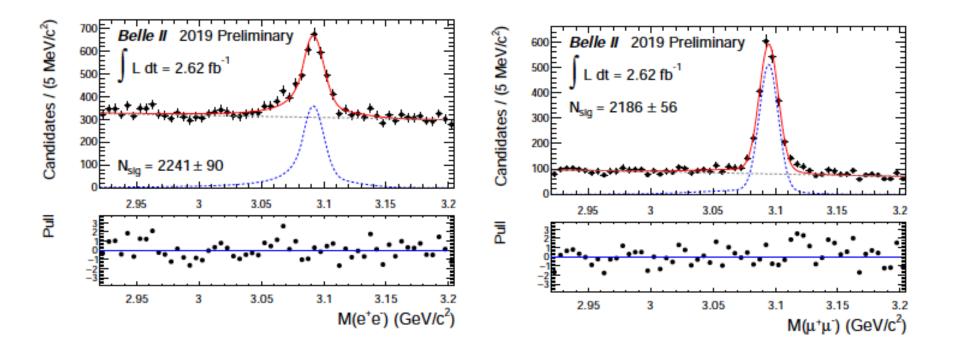

Particle IDentification (π , K, e, μ , ...) is crucial:

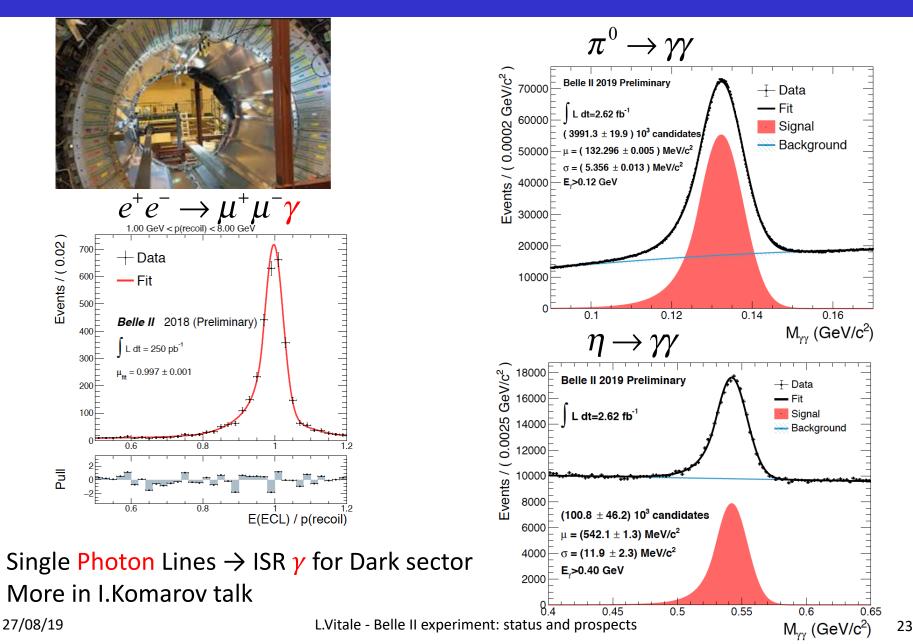
- particle reconstruction
- B-flavour tagging


Contributions from sub-detectors: here an example of K efficiency & mis-ID, from TOP (barrel) only and combined with CDC dE/dx, ARICH (forward endcap)

Measured on a control sample:

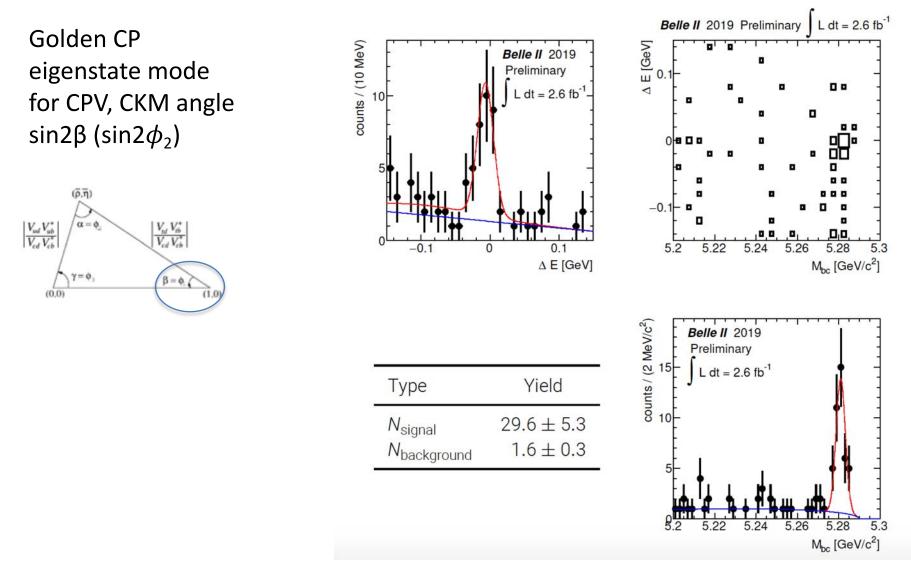

 $D^{*+} \rightarrow D^0 \pi_s^{+}; D^0 \rightarrow K^- \pi^+$ compared with MC expectations




K ID from CDC, TOP, ARICH

$J/\psi \rightarrow e^+e^- \mu^+\mu^-$: equally good

Photons


$B \rightarrow D^{(*)}h$ exclusive reconstruction

2200 Fully reconstructed hadronic B decays in 2.6fb⁻¹

Candidates per 6 MeV

 $3^0 \rightarrow J/\psi Ks$

More in P. Goldenzweig "First look at CKM parameters from early Belle II data" 27/08/19 L.Vitale - Belle II experiment: status and prospects

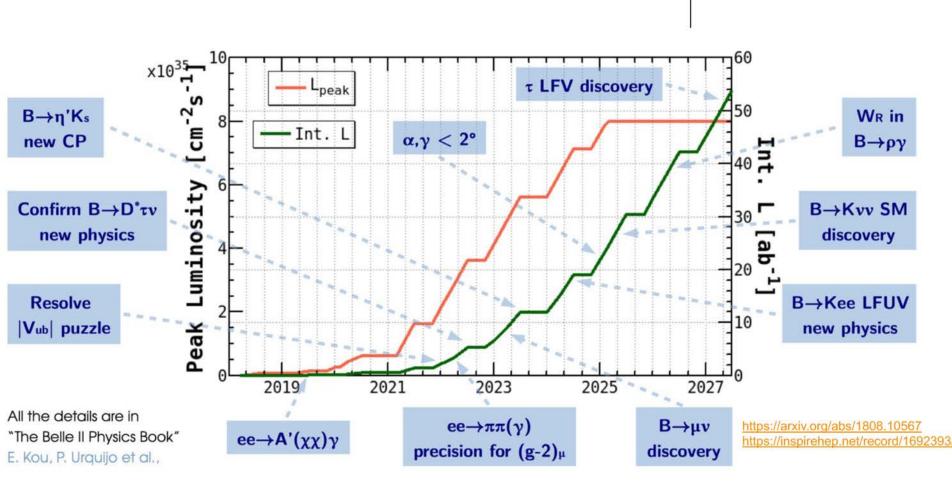
Prospects: Physics

https://arxiv.org/abs/1808.10567

Outcome of the B2TIP (Belle II Theory Interface) Workshops Emphasis is on New Physics (NP) reach.

Strong participation from theory community, *lattice QCD community* and Belle II experimenters. 689 pages, published by Oxford University Press KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26

The Belle II Physics Book


E. Kou^{74,¶,†}, P. Urquijo^{143,§,†}, W. Altmannshofer^{133,¶}, F. Beaujean^{78,¶}, G. Bell^{120,¶}, M. Beneke^{112,¶}, I. I. Bigi^{146,¶}, F. Bishara^{148,16,¶}, M. Blanke^{49,50,¶}, C. Bobeth^{111,112,¶}, M. Bona^{150,¶}, N. Brambilla^{112,¶}, V. M. Braun^{43,¶}, J. Brod^{110,133,¶}, A. J. Buras^{113,¶}, H. Y. Cheng^{44,¶}, C. W. Chiang^{91,¶}, M. Ciuchini^{58,¶}, G. Colangelo^{126,¶}, H. Czyz^{154,29,¶}, A. Datta^{144,¶}, F. De Fazio^{52,¶}, T. Deppisch^{50,¶}, M. J. Dolan^{143,¶}, J. Evans^{133,¶}, S. Fajfer^{107,139,¶}, T. Feldmann^{120,¶}, S. Godfrey^{7,¶}, M. Gronau^{61,¶}, Y. Grossman^{15,¶}, F. K. Guo^{41,132,¶}, U. Haisch^{148,11,¶}, C. Hanhart^{21,¶}, S. Hashimoto^{30,26,¶}, S. Hirose^{88,¶}, J. Hisano^{88,89,¶}, L. Hofer^{125,¶}, M. Hoferichter^{166,¶}, W. S. Hou^{91,¶}, T. Huber^{120,¶}, S. Jaeger^{157,¶}, S. Jahn^{82,¶}, M. Jamin^{124,¶}, J. Jones^{102,¶}, M. Jung^{111,¶}, A. L. Kagan^{133,¶}, F. Kahlhoefer^{1,¶}, N. Kosnik^{107,139,¶}, T. Kaneko^{30,26,¶}, Z. Ligeti^{19,¶}, H. Logan^{7,¶}, C. D. Lu^{41,¶}, V. Lubicz^{151,¶}, F. Mahmoudi^{140,¶}, K. Maltman^{171,¶}, S. Mishima^{30,¶}, M. Misiak^{164,¶},

Physics program with 50ab⁻¹

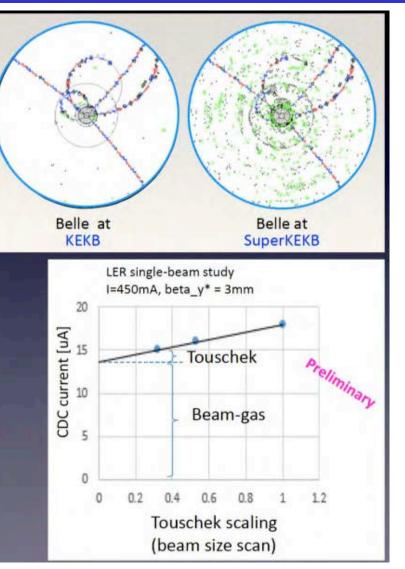
1808.10567

			1808.1056/
Observables	Expected the. accu-	Expected	Facility (2025)
	racy	exp. uncertainty	
UT angles & sides		NUMBER OF STREET	
ϕ_1 [°]	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
ϕ_3 [°]	***	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \to \eta' K^0)$	***	0.01	Belle II
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$\mathcal{A}(B \to K^+\pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic	80		
$\mathcal{B}(B \to \tau \nu) [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu\nu) [10^{-6}]$	**	7%	Belle II
$R(B \to D\tau\nu)$	***	3%	Belle II
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguins		270	Belle II/BITCO
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	***	0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \to R_S \pi^{-\gamma})$ $S(B \to \rho\gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$ $\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II
$\begin{array}{c} B(B \to K\nu\nu) [10] \\ R(B \to K^*\ell\ell) \end{array}$	***	0.03	Belle II/LHCb
		0.03	Delle II/LHCD
$\begin{array}{l} \text{Charm} \\ \mathcal{B}(D_s \to \mu \nu) \end{array}$	***	0.9%	Belle II
	***	2%	
$\mathcal{B}(D_s \to \tau \nu) A_{CP}(D^0 \to K^0_S \pi^0) \ [10^{-2}]$	**	0.03	Belle II Belle II
$\begin{array}{c} A_{CP}(D^{-} \rightarrow K_{S}\pi^{-}) \left[10^{-} \right] \\ q/p (D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) \end{array}$	***		Belle II
	***	0.03	
$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$		4	Belle II
Tau (10-10)	***		
$\tau \to \mu \gamma \ [10^{-10}]$	***	< 50	Belle II
$\tau \to e\gamma \ [10^{-10}]$	***	< 100	Belle II
$\tau \to \mu \mu \mu $ [10 ⁻¹⁰]	***	< 3	Belle II/LHCb

Prospects: an (optimistic) future roadmap

From F. Forti, EPS-HEP 2019

Prospects: beam backgrounds


e+e- colliders are "clean", but... at high luminosity, beam-induced backgrounds become a challenge

at the highest luminosities, QED backgrounds will dominate: $e^+e^- \rightarrow e^+e^-\gamma$ $e^+e^- \rightarrow e^+e^-e^+e^-$

at present, single beam backgrounds are predominant, higher in LER:

- beam-gas (residual gas in beam pipe)
- Touschek (intra-bunch scattering)
- injection-induced

"dust events", occasional large losses
 CDC HV trips with large bkgd
 beam abort protection against radiation spikes
 simulations & collimator studies

From L. Lanceri, SSI 2019

Prospects: Detector improvement program

• Short term:

- Replacement of TOP PMTs with ALD PMTs
- Replacement of the PXD with complete detector
- DAQ upgrade

• Medium term:

• Looking at options to make the detector more robust against background and radiation bursts

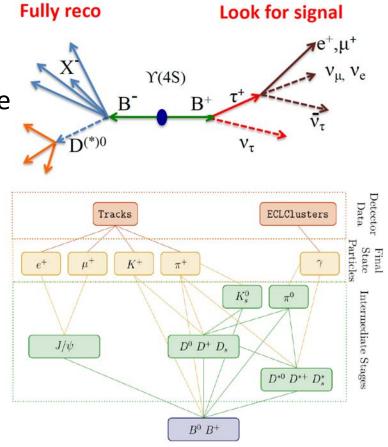
• Longer term:

• Started looking at luminosity upgrade possibilities e.g. Belle II VXD open Workshop https://indico.cern.ch/event/810687/

From F. Forti, EPS-HEP 2019

Conclusions

- Flavor physics at high luminosity e⁺e⁻ B-factory offers a very inviting and challenging menu
- The first physics run of Belle II at SuperKEKB in Spring 2019 has just completed with 6.5 fb⁻¹
- Detector and accelerator initial performances are good, but the road is still very long to achieve the goals
- Luminosity and beam backgrounds are the main challenges
- Looking forward for more data


BACK-UP SLIDES

FEI Full Event Interpretation technique

based on boosted decision trees (BDTs, a machine learning technique)

- Fully reconstruct B decays in many many modes to reduce backgrounds and provide tagging
- Useful for channels with weak exp. signature
 - Missing momentum (many neutrinos in the final state)
 - Inclusive analyses
- Tag with semileptonic decays
 - PRO: Higher efficiency ϵ tag ~ 1.5%
 - CON: more background, B momentum unmeasured
- Tag with hadronic decays
 - PRO: cleaner events, B momentum reconstructed
 - CON: smaller efficiency *E*tag ~ 0.3%

T.Keck, et al. Comput Softw Big Sci (2019) 3: 6.

Belle II vs LHCb

From J. Libby – Anomalies 2019

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹) by ~2024	~25	~50,000
Background level	Very high	Low
Typical efficiency	Low	High
π^0 , K_S reconstruction	Inefficient	Efficient
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Very good
Collision spot size	Large	Tiny
Heavy bottom hadrons	B _s , B _c , b-baryons	Partly B _s
au physics capability	Limited	Excellent
B-flavor tagging efficiency	3.5 - 6%	36%

Phase 3 Highlights

SUPERKEKB goals achieved:

- ✓ "nano beam scheme" demonstrated in phase 2, now progressing squeezing β_x^*/β_y^* to 80/2mm
- ✓ Peak luminosity 1.24 x 10³⁴ cm⁻² s⁻¹ (0.56 in Phase 2, goal 80 x 10³⁴)
- Luminosity in physics run 0.5 x 10³⁴ cm⁻² s⁻¹, limited by background
- ✓ Specific luminosity 2.9 x 10³¹ cm⁻²s⁻¹/mA², but beam blow up effect
- ✓ Continuous injection for May & June
- Belle II: Integrated luminosity 6.4 fb⁻¹ (target 11 fb⁻¹)
- Very good detector performance
- ✓ Excellent SVD cluster efficiency (99.5%) and position resolution

ISSUES

Fire accident, 3 weeks stop

Beam background \rightarrow in progress, diamonds taken as reference

QCS quenches \rightarrow diamonds drastically reduce their rate

Background accidents \rightarrow in one instance diamonds promptly (10 us) issued abort, but huge beam losses, collimator and VXD damages

 $\begin{array}{c} 0.30\\ 0.30\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.15\\ 0.10\\ 0.05\\ 0.00\\ 0.00\\$

Exp: 7-8 - All runs

Belle II online luminosity

efficiency	u/P	v/N
layer3	(99.75 ± 0.02)%	(98.46 ± 0.05)%
layer4	(99.66 ± 0.04)%	(99.37 ± 0.06)%
layer5	(99.62 ± 0.06)%	(99.43 ± 0.08)%
layer6	(99.3 ± 0.1)%	(99.3 ± 0.1)%

Other Belle II/SKB talks in this conference

- Pablo Goldenzweig: First look at CKM parameters from early Belle II data
- Philippe Bambade: The SuperKEKb/BELLE II as a demonstrator of future colliders
- Ilya Komarov: Dark Sector Physics with Belle II: first results and prospects