Digging into hadronic B decays

BAW India 2022 @ IISER Mohali

Vidya Sagar Vobbilisetti, Karim Trabelsi

17 December 2022

Motivation for studying B-tagging

 $B \rightarrow K \tau I/\tau$ searches rely on the purity of B-tagging

 $B^+ \rightarrow K^+\tau l$ has 1 - 2 neutrinos in the final state $B^+ \rightarrow K^+\tau\tau$ has 2 - 4 neutrinos in the final state

 \Rightarrow Huge background

 \Rightarrow Requires high purity in the tag-side

For hadronic B_{tag} : ϵ_{tag} (<1%) is a limiting factor.

Many interesting B-physics studies involve missing energy: D^(*)τν, K^(*)τι, K^(*)ττ, K^(*)νν, πlν, τι, τν, μν... which require B-tagging.

B_{sig}

B_{tag}

e. u or π

Irrespective of tagging strategy, optimal MC modeling is essential for good performance of ML techniques (NN/BDT).

Partial reconstruction for more statistics!

We can look for D⁰, D^{*0} and even D^{**0} in the recoil mass of a fully reconstructed B and a π ±

Within a narrow region around the peak, we know that one B decays to $D^{\circ}\pi^{+}$ and we can study the other B (decaying hadronically)

~16k events in a 3σ window around each peak in data. Roughly ½ statistics of X_clv sample, but much smaller systematic. [BELLE2-NOTE-PH-2021-029, Belle note bn1615]

[See B2GM slides]

Decay description is improved!

The improvement is not limited to calibration factors, but more importantly in the invariant masses (of intermediate particles), which are used as training variables in FEI

5

13

Semi-Leptonic gap

iClab

 $\mathcal{B}(\mathrm{B}^+ \to X^{0}_{\mathrm{c}} \ell^+ \nu_{\ell}) \approx 10.79 \,\%$

[Raynette van Tonder]

	$D^0\ell^2$ 2.31	$^+ u_\ell$ %		${ m D}^{*0}\ell^+ u_\ell$ 5.05 %		$\begin{array}{c c} D^{**0}\ell^+\nu_\ell + \text{Other} & \text{Gap} \\ \hline 2.38\% & \sim 1.05\% \end{array}$	This ago leads
$\frac{\text{Decay}}{B \to D\ell}$	$+ \nu_{\ell}$	(2.4 ± 0)	$\frac{\mathcal{B}(B^+)}{.1) \times 10^{-2}}$	$\mathcal{B}(E)$ $(2.2 \pm 0.1) imes 10$	$\frac{0}{-2}$	Fairly well known.	to up to 3 difference in V _{cb} measured
$B \to D^*$ $B \to D_1$	$\ell^+ \nu_\ell \\ \ell^+ \nu_\ell$	(5.5 ± 0) (6.6 ± 0)	$(.1) \times 10^{-2}$ $(.1) \times 10^{-3}$	$(5.1 \pm 0.1) \times 10$ $(6.2 \pm 0.1) \times 10$	-2 \rightarrow	Some iso-spin tension.	vs exclusive.
$B \to D_2^* + B \to D_0^* + B \to D_1^* + B \to $	$\ell^+ u_\ell \ \ell^+ u_\ell \ \ell^+ u_\ell$	(2.9 ± 0) (4.2 ± 0) (4.2 ± 0)	$(.3) \times 10^{-3}$ $(.8) \times 10^{-3}$ $(.9) \times 10^{-3}$	$(2.7 \pm 0.3) \times 10$ $(3.9 \pm 0.7) \times 10$ $(3.9 \pm 0.8) \times 10$	$-3 \longrightarrow$	Broad states based on 3 measurements. (BaBar, Belle, DELPHI)	
$\begin{array}{c} B \to D\pi \\ B \to D^* r \end{array}$	$\pi \ell^+ \nu_\ell \\ \pi \pi \ell^+ \nu_\ell$	(0.6 ± 0) (2.2 ± 1)	$(.9) \times 10^{-3}$ $(.0) \times 10^{-3}$	$(0.6 \pm 0.9) \times 10$ $(2.0 \pm 1.0) \times 10$	-3 -3	Some hints from the BaBar result.	[1507.08303]
$B \to X_{cl}$	lve ($\mathcal{U}_{(10.8\pm0)}$	X^{*} .4) × 10 ⁻²	$(10.1 \pm 0.4) \times 10$	-2		6

Semi-Leptonic gap: Filled with η ?

[Raynette van Tonder]

ICLab

Model 2: Decay via intermediate broad D^{**} state

Decay	$\mathcal{B}(B^+)$	$\mathcal{B}(B^0)$	3	Decay	$\mathcal{B}(B^+)$	$\mathcal{B}(B^0)$
	(-)	(2.2.1.2.1) - 10 ⁻²	Г	$B \to D_0^* \ell^+ \nu_\ell$	$(0.03 \pm 0.03) \times 10^{-2}$	$(0.03 \pm 0.03) \times 10^{-2}$
$B \to D \ell^+ \nu_\ell$	$(2.4 \pm 0.1) \times 10^{-2}$	$(2.2 \pm 0.1) \times 10^{-2}$		$(\hookrightarrow D\pi\pi)$		
$B \to D^* \ell^+ \nu_\ell$	$(5.5 \pm 0.1) \times 10^{-2}$	$(5.1 \pm 0.1) \times 10^{-2}$		$B \to D_1^* \ell^+ \nu_\ell$	$(0.03 \pm 0.03) \times 10^{-2}$	$(0.03 \pm 0.03) \times 10^{-2}$
$B \to D_1 \ell^+ \nu_\ell$	$(6.6 \pm 0.1) \times 10^{-3}$	$(6.2 \pm 0.1) \times 10^{-3}$		$(\hookrightarrow D\pi\pi)$		
$B \rightarrow D_0^* \ell^+ \nu_\ell$	$(2.9 \pm 0.3) \times 10^{-3}$	$(2.7 \pm 0.3) \times 10^{-3}$		$B \to D_0^* \pi \pi \ell^+ \nu_\ell$	$(0.108 \pm 0.051) \times 10^{-2}$	$(0.101\pm0.048)\times10^{-2}$
$B \rightarrow D_{2}^{*} \ell^{+} \nu_{\ell}$	$(4.2 \pm 0.8) \times 10^{-3}$	$(3.9 \pm 0.7) \times 10^{-3}$		$(\hookrightarrow D^*\pi\pi)$		
$B \rightarrow D'_{\ell} \ell^+ \nu_{\ell}$	$(4.2 \pm 0.0) \times 10^{-3}$	$(3.0 \pm 0.1) \times 10^{-3}$		$B \to D_1^* \pi \pi \ell^+ \nu_\ell$	$(0.108 \pm 0.051) \times 10^{-2}$	$(0.101\pm0.048)\times10^{-2}$
$D \rightarrow D_1 \ell \nu_\ell$	(4.2 ± 0.3) × 10	(0.0 ± 0.0) × 10		$(\hookrightarrow D^*\pi\pi)$		
$B \to D\pi\pi \ell^+ \nu_\ell$	$(0.6 \pm 0.9) \times 10^{-3}$	$(0.6 \pm 0.9) \times 10^{-3}$		$B \to D_0^* \ell^+ \nu_\ell$	$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$
$B \to D^* \pi \pi \ell^+ \nu_\ell$	$(2.2 \pm 1.0) \times 10^{-3}$	$(2.0 \pm 1.0) \times 10^{-3}$		$(\hookrightarrow D\eta)$		
$B \to D\eta \ell^+ \nu_\ell$	$(4.0 \pm 4.0) \times 10^{-3}$	$(4.0 \pm 4.0) \times 10^{-3}$		$B \to D_1^* \ell^+ \nu_\ell$	$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399\pm0.399)\times10^{-2}$
$B \to D^* \eta \ell^+ \nu_\ell$	$(4.0 \pm 4.0) \times 10^{-3}$	$(4.0 \pm 4.0) \times 10^{-3}$) L	$(\hookrightarrow D^*\eta)$		
$B \to X_c \ell \nu_\ell$	$(10.8 \pm 0.4) \times 10^{-2}$	$(10.1 \pm 0.4) \times 10^{-2}$				

The current workaround to explain the SL gap is to fill it with D^(*)ηlv, either as a non-resonant state or through (D^(*)η) resonance. But never seen.

Source of η : D**?

D^{**}	decay channel	branching ratio
$D_0(2300)^0$	$D^0\pi^0$	0.3333
	$D^+\pi^-$	0.6667
$D_1(2420)^0$	$D^{*0}\pi^0$	0.1997
	$D^{*+}\pi^-$	0.3994
	$D^0\pi^+\pi^-$	0.1719
	$D^0\pi^0\pi^0$	0.1145
	$D^+\pi^-\pi^0$	0.1145
$D_1(2430)^0$	$D^{*+}\pi^-$	0.6667
	$D^{*0}\pi^0$	0.3333
$D_2^*(2460)^0$	$D^{*0}\pi^0$	0.1334
	$D^{*+}\pi^-$	0.2669
	$D^0\pi^0$	0.1999
	$D^+\pi^-$	0.3998

TABLE XIX: Decay channels of D^{**}

$\begin{array}{c} \textbf{Model 2:} \\ \textbf{Decay via intermediate broad } D^{**} \text{ state} \end{array}$

Decay	$\mathcal{B}(B^+)$	$\mathcal{B}(B^0)$
$B \to D_0^* \ell^+ \nu_\ell$	$(0.03 \pm 0.03) \times 10^{-2}$	$(0.03 \pm 0.03) \times 10^{-2}$
$(\hookrightarrow D\pi\pi) \\ B \to D_1^* \ell^+ \nu_\ell \\ (\hookrightarrow D\pi\pi) $	$(0.03\pm 0.03)\times 10^{-2}$	$(0.03 \pm 0.03) \times 10^{-2}$
$(\rightarrow D_{\pi\pi})$ $B \rightarrow D_0^* \pi \pi \ell^+ \nu_\ell$	$(0.108 \pm 0.051) \times 10^{-2}$	$(0.101\pm 0.048)\times 10^{-2}$
$(\hookrightarrow D^* \pi \pi)$ $B \to D_1^* \pi \pi \ell^+ \nu_\ell$	$(0.108\pm 0.051)\times 10^{-2}$	$(0.101 \pm 0.048) \times 10^{-2}$
$(\hookrightarrow D^* \pi \pi)$ $B \to D_0^* \ell^+ \nu_\ell$	$(0.396\pm 0.396)\times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$
$(\hookrightarrow D\eta) B \to D_1^* \ell^+ \nu_\ell$	$(0.396\pm 0.396)\times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$
$(\hookrightarrow D^*\eta)$		

The decays of D** are not well measured, and the Belle II model does not consider $\eta.$

D** decays and $B \rightarrow D^{**} X$ decays needs further studies.

Source of η : D(2S)?

In 2010, BaBar observed even higher D resonances, consistent with L=2.

[1009.2076]

These D(2S) resonances have higher mass, and are potential candidates for sources of η filling the SL gap.

SL D^(*)ηlv

Signals of these SL decays are difficult to search for.

SL $D^{(*)}\eta l v \Rightarrow$ Hadronic $D^{(*)}\eta \pi$, $D^{(*)}\eta \rho$

Signals of these SL decays are difficult to search for.

But the hadronic counterparts (changing lv with $\pi/\rho)$ are easier to search.

The presence of D(*) $\eta\pi$ can validate the assumption of η filling the SL-gap and can also describe the source of η .

Vismaya will talk more about the status.

SL $D^{(*)}\eta l v \Rightarrow$ Hadronic $D^{(*)}\eta \pi$, $D^{(*)}\eta \rho$

Signals of these SL decays are difficult to search for.

 $B \rightarrow D^*\pi$ is 1/10 of $B \rightarrow D^*lv$.

⇒ A limit of BF(B → D* $\eta\pi$) < 4 x 10⁻⁴ is enough to invalidate η as a candidate for SL gap. But the hadronic counterparts (changing lv with π/ρ) are easier to search.

The presence of D(*) $\eta\pi$ can validate the assumption of η filling the SL-gap and can also describe the source of η .

Vismaya will talk more about the status.

Hadronic $D^{(*)}\eta\pi$ vs $D^{(*)}\eta\rho$

In the alternative way of producing η through W, the ηπ contribution is suppressed. G-parity violation ⇒ Second class current. (also seen in τ decays)

But np is still possible.

So, studying both $D^{(*)}\eta\pi$ vs $D^{(*)}\eta\rho$ simultaneously can also shed light on the source of η .

Exclusive reconstruction

Reconstruct all the final state particles from the B \Rightarrow Calculate the 4-momentum of B. And apply selection using ΔE (and M_{bc})

 $\frac{\text{Efficiency} =}{\text{BR}_{\overline{D0} \to K \pi} \times \boldsymbol{\epsilon}_{K} \times \boldsymbol{\epsilon}_{\pi} \times \boldsymbol{\epsilon}_{\pi}}$

Reconstruct all the final state particles from the B \Rightarrow Calculate the 4-momentum of B. And apply selection using ΔE (and M_{bc})

 $\frac{\text{Efficiency}}{\text{BR}_{\overline{\mathbf{D}0} \to K \pi} \times \boldsymbol{\epsilon}_{K} \times \boldsymbol{\epsilon}_{\pi} \times \boldsymbol{\epsilon}_{\pi}} \times \boldsymbol{\epsilon}_{\pi}$

ÍJCLab

Popular when there are neutrinos which cannot be reconstructed, like in $B \rightarrow K \tau l$

Instead of reconstructing the D exclusively, one could reconstruct the other B in the event fully. And look for the D in the recoil mass.

In CM frame of $\Upsilon(4S)$:

$$\vec{p}_{B_{sig}} = -\vec{p}_{B_{tag}}$$
$$\vec{p}_X = \vec{p}_{B_{sig}} - \vec{p}_{\pi^+}$$
$$E_X = E_{beam} - E_{\pi^+}$$
$$M_X = \sqrt{E_X^2 - \vec{p}_X^2}$$

Recoil with $\boldsymbol{\pi}$

We can look for D⁰, D^{*0} and even D^{**0} in the recoil mass of a fully reconstructed B and a $\pi\pm$

Within a narrow region around the peak, we know that one B decays to $D^{\circ}\pi^{+}$ and we can study the other B (decaying hadronically)

Efficiency = for D^o: (BR_{$\overline{D0 \rightarrow K\pi}$} × ϵ_K × ϵ_π) × ϵ_X

for D^{*}⁰: (BR_{$\bar{D}^*0 \to \bar{D}0 \pi 0$} × $\epsilon_{\pi 0}$ × BR_{$\bar{D}0 \to K \pi$} × ϵ_K × ϵ_{π}) × ϵ_X

Here, D* has lower efficiency than D.

Efficiency = $\epsilon_{B-tag} \times \epsilon_X$

Here D* and D have same efficiency!

To extend on this idea, we are not limited to $\boldsymbol{\pi}.$

X can be anything like ππº (ρ), πππ (a₁), ηπ, ηρ, ωπ, KK_S, KK*.....?!

Efficiency = $\epsilon_{B-tag} \times \epsilon_X$

Here D* and D have same efficiency!

Efficiency = for D⁰: (BR_{$\bar{D0 \rightarrow K\pi$} × ϵ_K × ϵ_π) × ϵ_χ

for D^{*}⁰: (BR_{$\bar{D}^*0 \to \bar{D}0 \pi 0$} × $\epsilon_{\pi 0}$ × BR_{$\bar{D}0 \to K \pi$} × ϵ_K × ϵ_{π}) × ϵ_X

Here, D* has lower efficiency than D.

To extend on this idea, we are not limited to $\boldsymbol{\pi}.$

X can be anything like ππ° (ρ), πππ (a₁), ηπ, ηρ, ωπ, KK_s, KK*.....?!

Here D* and D have same efficiency!

Here, D* has lower efficiency than D.

Both procedure look at different events:

Events with B \rightarrow D^{(*(*))} X where the other B \rightarrow Had B-tag

Events with $B \to DX$ where $D \to K\pi$

Example: DKK partial reconstruction

Baryonic decays with recoil?

 $B \rightarrow D^{(*)}p\overline{p}\pi$ $\rightarrow D^{(*)}p\overline{p}\pi\pi$ $B \rightarrow \Lambda_{c}p\pi$ $\rightarrow \Lambda_{c}p\pi\pi^{0}$ $\rightarrow \Lambda_{c}p\pi\pi\pi$

are the baryonic decays of B with the largest branching fractions (some based on 20 year old CLEO measurements).

Clean enough to study using recoil method i.e., without reconstructing $D^{(*)}$ and Λ_c .

D** is more difficult

The D and D* peaks are narrow and at the low-background region, but D** is more difficult to study here.

Hadronic FEI

We can first zoom into the D** region.

D** in recoil

 π^{+}

D** in recoil

We can first zoom into the D** region. And focus on the "narrow" $D^{**}s$: D_1 and D_2

UCLab

Only 1/10th of data; not optimized, just a demonstration.

Double-recoil with D** sample

In these events, we can do a "double-recoil" by adding another $\pi^{\scriptscriptstyle \star}$

 $D^{}_1$ can only decay to D^{*-} $\pi^{\scriptscriptstyle +},$ but $D^{}_2$ can decay to both $D^{\scriptscriptstyle -}$ $\pi^{\scriptscriptstyle +}$ and D^{*-} $\pi^{\scriptscriptstyle +}$

ICLab

	800	-							
C ²	700	∫ <i>L</i> dt	= 112 Data	.76fb ⁻¹	1				6
eV/	600		D_1 D_2					_ <u></u> ∎∎	
1 G	500		D_0 D_1'				_ _{↓↓↓↓}	₽ ^{₽₽}	
0.0	400		charg mixed	ed_bkg	, t , t	[↓] +++ +++++	, [¶] †	-	
es /	300		charm uds 🖡						
ntri	200			1 - 1-1					
ш	100	 							
	0 2.	1	2.2	2.3	2.4	2.5	2.6	2.7	2.8
				Ν	1 _{recoil}	$ofB_{tag} + i$	τ		
			D*(2460	D^{0} D^{*}	×0π0		0 1334		

 $D^{*+}\pi^{-}$

 $D^0\pi^0$

 $D^+\pi^-$

0.2669

0.1999

0.3998

$D_1(2420)^0$	$D^{*0}\pi^{0}$	0.1997		
	$D^{*+}\pi^-$	0.3994		
	$D^0\pi^+\pi^-$	0.1719		
	$D^0\pi^0\pi^0$	0.1145		
	$D^+\pi^-\pi^0$	0.1145		

Only 1/10th of data; not optimized, just a demonstration.

Double-recoil with D** sample

As expected, in the region of D_1 , we see mostly D^* -:

 π^+

 π^{*}

And in the region of D_2 , we see both D^- and D^{*-} :

Double-recoil with D** sample

As expected, in the region of D_1 , we see mostly D^* :

B_{tag}

sia

27

And in the region of D_2 , we see both D^- and D^{*-} :

Summary We don't need to reconstruct the $D^{(*)}$ or Λ_c exclusively.

- There are many problems other than anomalies.
- Studying B $\rightarrow D^{(*)}\eta\pi$ and B $\rightarrow D^{(*)}\eta\rho$ along with possible intermediate resonances like D^{**} or D(2S) will be a crucial input for understanding SL-gap and V_{cb}.
- Studying the decays of D** and D(2S) is also essential (charm physics)
- Demonstrated the performance of reconstruction $B \to D^{(*)}\pi$ with recoil-mass method.
- Many more exciting possibilities with recoil:

◦
$$B \rightarrow D^{(*)} \pi \pi^{\circ}$$
 (ρ), $B \rightarrow D^{(*)} \pi \pi \pi$ (α₁),

• $B \rightarrow D^{(*)} \eta \pi, B \rightarrow D^{(*)} \eta \rho, B \rightarrow D^{(*)} \omega \pi,$

○
$$B \rightarrow D^{(*)} KK_s, B \rightarrow D^{(*)} KK^*$$

• $B \rightarrow D^{(*)}p\overline{p}\pi$, $B \rightarrow D^{(*)}p\overline{p}\pi\pi$

◦
$$B \rightarrow \Lambda_{c} p \pi, B \rightarrow \Lambda_{c} p \pi \pi^{0}, B \rightarrow \Lambda_{c} p \pi \pi \pi$$

Backup

Calibration factors per mode

with PDG uncertainties

Systematics on calibration factors?

Case study: $B^+ \rightarrow \overline{D}^0 \pi^+ \pi^+ \pi^-$

Improving calibration factors is not our primary target, instead improving the invariant masses (of intermediate particles), which are used as training variables in FEI will impact efficiency and purity

[BELLE2-NOTE-PH-2022-002]

By restudying the CLEO and LHCb measurements for this mode, we realized that the NR and ρ components should be almost 0 and should be dominated by $a_1^{\,*}$

Model for $B \rightarrow D^{(*,**)} n\pi m\pi^{o}$ decays

2 primary rules:

- D° X: D*° X : D**° X ~= 1:1:1 (based on observation from D π⁻ : D* π⁻ : D** π⁻ and D ρ⁻ : D* ρ⁻)
- $Y \pi^-: Y \rho^-: Y \alpha_1^- \sim = 1: 2.5: 2.5$

(based on predictions and confirmed with $\tau \rightarrow h \ v$ decays)

Additional information:

- $3\pi \pi^0$ is hard to model without some sort of ρ' resonance
 - For $\omega\pi$ we fix from measurements.
 - For $\rho\pi\pi$ and $\eta\pi$, we let PYTHIA generate it.
- Decays of D** particles is synchronized with Belle II
- $\mathbf{V}_{\mathbf{W}}$ The fraction of 4 different D** is fixed based on observations.

Happens through 2 channels, one with spectator quarks (call Y) and one from the W (call X).

> We want to <u>modify</u> the DECAY table to latest PDG/paper interpretations and this model to see the impact.

Essentially validation, we do not want to fine-tune (except set 0 there is no signal*).

*See backup

Validation by embedding signal MC

To quickly study the impact of the modified DECAY.DEC file, generated Signal MC of B $\rightarrow D^{(*)}\pi$ (other B decays updated) and replaced corresponding events in the generic Charged MC:

Updated calibration factors

per mode

Decay description is improved!

The improvement is not limited to calibration factors, but more importantly in the invariant masses (of intermediate particles), which are used as training variables in FEI

Retraining FEI: Validation

Nothing changes in the FEI modes where we did not change anything.

There is a significant background reduction in FEI modes where MC model is improved.

Our training has some issues while reconstructing modes with π^{0} , under investigation... (see backup) ¹⁴

Retraining FEI: Effective cuts

15

Retraining FEI: Effective cuts

Retraining FEI: Data-MC agreement

iClab

After reconstructing all MC and data with the training based on new DEC, the Data - MC agreement improves too! (even at higher M_{recoil}!)

$B^+ \rightarrow D\pi$ selection procedure

We start by reconstructing a FEI-Hadronic B with cuts:

- M_{bc} > 5.27 GeV/c² |ΔE| < 0.05 GeV
- FEI Signal Probability > 0.01

Select $\alpha \pi$ with:

- |d0| < 1 and |z0| < 3
- $L_{K/\pi}$ < 0.9 and µ-id < 0.9 and e-id < 0.9

Simple continuum suppression:

- Event sphericity > 0.2
- B_{too}'s cosTBTO < 0.9

After all this, if there are multiple candidates, we select the one with highest FEI signal probability and highest π momentum in CMS

These cuts could be further optimized, but seem good enough for preliminary studies.

The code is present [here]

Relative PDG uncertainties

Changes in DEC not based on measurements: 1/2

 $B^+ \rightarrow D^{*-} \pi^+ \pi^+ \pi^0$

B⁺ → **D**^(*) ηπ⁺

ARGUS measured it to be (1.5 ± 0.7)% But we see that the contribution coming from D** is enough

No measurement, but overestimated by PYTHIA.

UCLab

Changes in DEC not based on measurements: 2/2

 $B^+ \rightarrow \overline{D}^{(*)} \rho^+ \rho^0$

¹Clab

Regenerating run-independent* samples *still exp-dependent BG

Run-Independent sample of 10% seems good enough for comparison?

Regenerating run-independent* samples

With new DEC file:

