

Measurements of the ratio of partial widths: $\Gamma(D_s^{*+} \rightarrow D_s^+ \pi^0) / \Gamma(D_s^{*+} \rightarrow D_s^+ \gamma)$

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhardwaj²

¹Panjab University Chandigarh, ²IISER Mohali

Belle/Belle II Analysis Workshop

December 17th - 18th, 2022

Introduction

- $D_s^{*+} \rightarrow D_s^+ \gamma$ only observed radiative decay mode of D_s^{*+} meson and $D_s^{*+} \rightarrow D_s^+ \pi^0$ is only kinematically allowed decay.
- $D_s^{*+} \rightarrow D_s^+ \pi^0$ violates isospin symmetry but theoretically(PhysRevD.49.6228) suggested $D_s^{*+} \rightarrow D_s^+ \pi^0$ proceed via $\pi^0 \eta$ mixing to conserve isospin.
- Theoretically estimated ratio of partial widths: $\Gamma(D_s^{*+} \rightarrow D_s^{+}\pi^0)/\Gamma(D_s^{*+} \rightarrow D_s^{+}\gamma) \simeq 0.01 - 0.10$
- Previous measurements of Γ(D^{*+}_s → D⁺_sπ⁰)/Γ(D^{*+}_s → D⁺_sγ):
 - 0.062_{-0.018}^{+0.020}(stat.) \pm 0.022(syst.) CLEO using 3.75 fb^{-1} data
 - 0.062 \pm 0.005(stat.) \pm 0.006(syst.) BABAR using 90.4 fb^{-1} data
- Higher statistics in Belle II can improve existing measurements
- Early measurements will give a better understanding of the Belle II performance
- With neutrals, Belle II can perform better than LHCb

We will use following decay modes of D_s^+

Decay Mode	Effective Branching Ratio
$egin{array}{ccc} D_{s}^{+} & ightarrow K^{+} ar{K^{*0}},\ K^{*0} ightarrow K^{-} \pi^{+} \end{array}$	2.58%
$egin{array}{ccc} D^+_s & ightarrow \phi \pi^+, \ \phi ightarrow K^+ K^- \end{array}$	2.24%

Generic MC samples: MC 15 run independent samples, corresponds to an integrated luminosity of 400 $\rm fb^{-1}$

Official Generated Signal Samples: ~ 1 Million for each decay mode

Selection criteria for $D_s^{*+} ightarrow D_s^+ \pi^0$

Objects	Selection cuts	
Tracks	dr < 1 cm	
	dz < 3 cm	
K^+	KaonID > 0.4	
π^+	PionID > 0.4	
	$E_{\gamma}^{barrel} >$ 30 MeV	
	$E_{\gamma}^{forward} > 120 \text{ MeV}$	
γ	$E_{\gamma}^{backward} > 80 { m MeV}$	
	clusterE1E9 > 0.4	
	$0.5 < { m clusterTheta} < 2.6180$	
	clusterNHits > 1.5	
	$0.121 < M(\gamma\gamma) < 0.142$	
<i>—</i> 0	-1.2 $<\Delta\phi < 1.2$	
π-	daughterAngle(0,1) < 1	
	Mass Fit	
D_s^+	$1.922 < M < 2.02 { m GeV/c^2}$	
D*+	$0.135 < \Delta M(M(D_s^{*+}) - M(D_s^{+})) < 0.16 \; { m GeV/c^2}$	
D_{s}	$p^*(D_s^{*+}) > 2.5 \text{ Gev/c}$	

Signal and background is selected using isSignal variable

$\mathsf{M}(D^+_s)$ & $\Delta\mathsf{M}$ distributions for $D^{*+}_s o D^+_s \pi^0$ decay mode

 ΔM is within signal region 1.96 $< M(D_s^+) <$ 1.98 but no ΔM on $M(D_s^+)$ distributions

Objects	selection cuts
Tracks	dr < 1 cm
	dz < 3 cm
K^+	KaonID $rac{\mathcal{L}_{K}}{\mathcal{L}_{\pi}+\mathcal{L}_{K}} > 0.4$
π^+	PionID $\frac{\mathcal{L}_{\pi}}{\mathcal{L}_{\pi} + \mathcal{L}_{K}} > 0.4$
γ	$E > 300 \; MeV$
D_s^+	$1.922 < M(K^+K^-\pi^+) < 2.02 \; { m GeV/c^2}$
	$0.06 < \Delta M < 0.18 \; { m GeV/c^2}$
D_{s}^{*+}	$2.06 < M(D_s^{*+}) < 2.16 \; { m GeV/c^2}$
	$p^*(D_s^{*+})>2.5~{ m Gev/c}$

Additional π^0 veto is applied to reduce background from π^0

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhar $\Gamma(D_s^{*+} o D_s^+ \pi^0) / \Gamma(D_s^{*+} o D_s^+ \gamma)$ December 1

$\mathsf{M}(D^+_s)$ & $\Delta\mathsf{M}$ distributions for $D^{*+}_s o D^+_s \gamma$ decay mode

 ΔM is within signal region 1.96 $< M(D_s^+) <$ 1.98 but no ΔM on $M(D_s^+)$ distributions

Crossfeed Plots

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhar $\Gamma(D_s^{*+} o D_s^+ \pi^0)/\Gamma(D_s^{*+} o D_s^+ \gamma)$

December 17th - 18th, 2022

Crossfeed Plots

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhar $\Gamma(D_s^{*+} o D_s^+ \pi^0)/\Gamma(D_s^{*+} o D_s^+ \gamma)$

December 17th - 18th, 2022

Efficiency for $D_s^{*+} \rightarrow D_s^+ \pi^0$ decay mode

$$D_s^+ \to \phi \pi^+$$

$$D_s^+ \to \bar{K^{*0}}K^+$$

 $Efficiency = \frac{Number of Reconstructed D_s^{*+} \rightarrow D_s^+ \pi^0 \text{ candidates}}{Total Number of D_s^{*+} \text{ candidates}}$

Process	Efficiency(%)
$D_s^+ \to \phi \pi^+$	$2.5\pm0.017(Stat.)$
$D^+_s ightarrow K^{+} 0 K^+$	$2.1\pm0.014(Stat.)$

Signal PDF: Double Gaussian Function Background PDF: Threshold Function

10 / 25

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhar $\Gamma(D_s^{*+} \rightarrow D_s^{+}\pi^0)/\Gamma(D_s^{*+} \rightarrow D_s^{+}\gamma)$ December 17th - 18th, 2022

Efficiency for $D_s^{*+} \rightarrow D_s^+ \gamma$ decay mode

$$D_s^+ \to \phi \pi^+$$

$$D_s^+ \to \bar{K^{*0}}K^+$$

Total Number of D^{*+} candidates

Process	Efficiency(%)
$D_s^+ o \phi \pi^+$	$5.5\pm0.017(Stat.)$
$D^+_s ightarrow ar{k^{*0}} K^+$	$4.5\pm0.019(Stat.)$

Signal PDF: Double Gaussian + Crystal Ball Function

ㅋㅋ ㅋㅋ

11 / 25

December 17th - 18th, 2022

Background PDF: Threshold Function

Latika Aggarwal¹, Sunil Bansal¹, <u>Vishal Bhan</u> $\Gamma(D_s^{*+} \rightarrow D_s^+ \pi^0) / \Gamma(D_s^{*+} \rightarrow D_s^+ \gamma)$

To extract the signal yield from we 2D fit ΔM and $M(D_s^+)$ distribution of all the 4 decays

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhar $\Gamma(D_s^{*+} o D_s^{+} \pi^0)/\Gamma(D_s^{*+} o D_s^{+} \gamma)$ December 17th - 18th, 2022 13/25

Signal Pdf: Crystall Ball + Double Gaussian Function

Combinatorial bkg: Threshold function Peaking bkg: Gaussian

Signal Pdf: Double Gaussian Combinatorial bkg: 2nd order polynomial Peaking bkg:Double Gaussian

14 / 25

Signal Candidates from Truth matching: 98501

Signal Pdf: Crystall Ball + Double Gaussian Function

Combinatorial bkg: Threshold function Peaking bkg: Gaussian

Signal Pdf: Double Gaussian Combinatorial bkg: 2nd order polynomial Peaking bkg: Double Gaussian

15 / 25

Signal Candidates from Truth matching: 94670

Measurement of $\Gamma(D_s^{*+} \to D_s^+ \pi^0) / \Gamma(D_s^{*+} \to D_s^+ \gamma)$

$$\begin{split} \mathsf{N}_1 &= \epsilon_1 (D_s^{*+} \to D_s^+ (\phi \pi^+) \pi^0) \times \mathsf{N}(D_s^{*+}) \times \mathsf{BR}(D_s^{*+} \to D_s^+ \pi^0) \times \mathsf{Eff}.\mathsf{BR}(D_s^+ \to \phi \pi^+) \\ \mathsf{N}_2 &= \epsilon_2 (D_s^{*+} \to D_s^+ (\mathcal{K}^+ \bar{\mathcal{K}^{*0}}) \pi^0) \times \mathsf{N}(D_s^{*+}) \times \mathsf{BR}(D_s^{*+} \to D_s^+ \pi^0) \times \mathsf{Eff}.\mathsf{BR}(D_s^+ \to \mathcal{K}^+ \bar{\mathcal{K}^{*0}}) \\ \mathsf{N}(D_s^{*+} \to D_s^+ \pi^0) &= \mathsf{N}_1 + \mathsf{N}_2 \end{split}$$

$$\Gamma(D_s^{*+} \to D_s^+ \pi^0) = \frac{N(D_s^{*+} \to D_s^+ \pi^0)}{N(D_s^{*+})(\epsilon_1 \times Eff.BR(D_s^+ \to \phi\pi^+)) + (\epsilon_2 \times Eff.BR(D_s^+ \to K^+ \bar{K^{*0}}))}$$

$$\Gamma(D_s^{*+} \to D_s^+ \gamma) = \frac{N(D_s^{*+} \to D_s^+ \gamma)}{N(D_s^{*+})(\epsilon_3 \times \textit{Eff}.\textit{BR}(D_s^+ \to \phi\pi^+)) + (\epsilon_4 \times \textit{Eff}.\textit{BR}(D_s^+ \to K^+ \bar{K^{*0}}))}$$

$$\frac{\Gamma(D_s^{*+} \to D_s^+ \pi^0)}{\Gamma(D_s^{*+} \to D_s^+ \gamma)} = \frac{N(D_s^+ \pi^0) \times (\epsilon_3 \times \textit{Eff}.\textit{BR}(D_s^+ \to \phi\pi^+)) + (\epsilon_4 \times \textit{Eff}.\textit{BR}(D_s^+ \to K^+ \bar{K^{*0}}))}{N(D_s^+ \gamma) \times (\epsilon_1 \times \textit{Eff}.\textit{BR}(D_s^+ \to \phi\pi^+)) + (\epsilon_2 \times \textit{Eff}.\textit{BR}(D_s^+ \to K^+ \bar{K^{*0}}))}$$

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhan $\Gamma(D_s^{*+} \rightarrow D_s^{+}\pi^0)/\Gamma(D_s^{*+} \rightarrow D_s^{+}\gamma)$ December 17th - 18th, 2022 16/25

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ = 臣 = の Q @

Measurement of $\Gamma(D_s^{*+} \to D_s^+ \pi^0) / \Gamma(D_s^{*+} \to D_s^+ \gamma)$

Quantity	Value(Generic MC)
$\epsilon_1(D_s^{*+} \rightarrow D_s^+(\phi\pi^+)\pi^0)$	0.025 ± 0.00017
$\epsilon_2(D_s^{*+} \rightarrow D_s^+(K^+\bar{K^{*0}})\pi^0)$	0.021 ± 0.00014
$\epsilon_3(D_s^{*+} ightarrow D_s^+(\phi\pi^+)\gamma)$	0.055 ± 0.00017
$\epsilon_4(D_s^{*+} \rightarrow D_s^+(K^+\bar{K^{*0}})\gamma)$	0.045 ± 0.00019
$Eff.BR(D_s^+ o \phi \pi^+)$	0.0224
$Eff.BR(D_s^+ \rightarrow K^+ \bar{K^{*0}})$	0.0258
$N(D_s^{*+} \rightarrow D_s^+ \pi^0)$	5530 ± 168
$N(D_s^{*+} ightarrow D_s^+ \gamma)$	187270 ± 747
$\frac{\Gamma(D_s^{*+} \to D_s^+ \pi^0)}{\Gamma(D_s^{*+} \to D_s^+ \gamma)}$	0.064 ± 0.003 (Stat.)

Experiment	Previous Results
BABAR	$0.062 \pm 0.005(stat.) \pm 0.006(syst.)$
CLEO	$0.062^{+0.020}_{-0.018}(ext{stat.}) \pm 0.022(ext{syst.})$

- Initial measurements from MC is consistant with expectations.
- There is about 50% reduction in statistical uncertainty as compared to previous best measurements

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhar $\Gamma(D_s^{*+} o D_s^{+} \pi^0)/\Gamma(D_s^{*+} o D_s^{+} \gamma)$ December 17th - 18th, 2022

- Working on the measurements of the ratio of partial widths: $\Gamma(D_s^{*+} \rightarrow D_s^+ \pi^0) / \Gamma(D_s^{*+} \rightarrow D_s^+ \gamma)$ with Belle II data.
- Presented results with Generic MC
- To do:

- Look at the data, understand various correction factors, robustness of fitting setup, and systematic uncertainties

- We are also planning to measure the width of $D_s^{*+}(\Gamma(D_s^{*+}))$

Thank you !!

Backup slides

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhan $\Gamma(D_s^{*+} o D_s^{+}\pi^0)/\Gamma(D_s^{*+} o D_s^{+}\gamma)$ December 17th - 18th, 2022 19/25

→ ∃ →

э

Process	Multiplicity(%)	Efficiency(%)
$D_s^{*+} ightarrow D_s^+(\phi\pi^+)\pi^0$	0.04	100
$D_s^{*+} ightarrow D_s^+ (\phi \pi^+) \gamma$	0.08	98
$D^{*+}_s ightarrow D^+_s (K^+ ar{K^{*0}}) \pi^0$	0.07	100
$D^{*+}_{s} ightarrow D^{+}_{s}(K^{+}ar{K^{*0}})\gamma$	0.05	89

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhan $\Gamma(D_s^{*+} \rightarrow D_s^+ \pi^0)/\Gamma(D_s^{*+} \rightarrow D_s^+ \gamma)$ December 17th - 18th, 2022

æ

▶ ∢ ∃ ▶

Crossfeed Plots

Crossfeed Plots

Latika Aggarwal¹, Sunil Bansal¹, <u>Vishal Bhan</u>

CosθHelicity

Sources	Relative Uncertainty(%)
Background Shape	4.8
Monte carlo statistics	5.0
Signal model	3.6
p^* dependance	6.8
Quadrature Sum	10.2

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhan $\Gamma(D_s^{*+} o D_s^+ \pi^0) / \Gamma(D_s^{*+} o D_s^+ \gamma)$ December 1

▶ < ∃ >

æ

We apply π^0 veto cut to reduce the background from π^0 , Following is the method

- Reconstruct the decay mode $D_s^{*+} \to D_s^+ \gamma$
- Create Rest of Event
- Combine γ used in the reconstruction of D_s^{*+} with all other γ s in the event with energy > 50 MeV to reconstruct π^0 candidate
- π^0 mass window is selected as 80 MeV < M < 200 MeV
- Best π^0 candidate is selected
- Obtained χ^2 variable for π^0
- Optimized the χ^2 distribution and applying $\chi^2 > 0.2$ cut will reduce 67% of background from π^0 .

Latika Aggarwal¹, Sunil Bansal¹, Vishal Bhan $\Gamma(D_s^{*+} \rightarrow D_s^+ \pi^0) / \Gamma(D_s^{*+} \rightarrow D_s^+ \gamma)$ Dece

December 17th - 18th, 2022