# Contribution of Hadronic Vacuum Polarization (HVP) in the anomalous magnetic moment of the muon

*Gaurav Sharma* (ph19d203)

Supervisor - Prof. James F. Libby



Department of Physics, IIT Madras, Chennai, India

BAW 2022

#### Introduction

- The hadronic vacuum polarization, theoretical approach and experimental technique.
- Advantage of working with Belle-II
- Tracking efficiency
- Work done so far
- Summary
- Future plan

#### Introduction

• For a fundamental particle with intrinsic angular momentum  $\vec{s}$  and charge Q, the intrinsic magnetic momenta is given by

$$\vec{\mu} = g \frac{Qe}{2m} \vec{s},$$

• The Dirac equation predicts g = 2. The value of g is adjusted by the Quantum fluctuation resulting non-zero value of the magnetic anomaly, defined as  $a_{\mu} \equiv (g - 2)/2$ , The blob contains



FIG. 1. Feynman diagrams of representative SM contributions to the muon anomaly. From left to right: first-order QED and weak processes, leading-order hadronic (H) vacuum polarization, and hadronic light-by-light contributions.

- The tension between measurements and theoretical predictions of muon magnetic anomaly,  $a_{\mu} \equiv (g_{\mu} - 2)/2$ , provides the hint for new physics.
- The first results of Muon g-2 experiment at Fermilab (combined with BNL E821 result) strengthen the tension to 4.2 sigma.
- Discrepancy between KLOE (combined) and BABAR measurements

#### Belle II contribution is needed !!

![](_page_3_Figure_5.jpeg)

Fig. The KLOE combination compared to the BABAR [1]

# The hadronic vacuum polarization (HVP) [1,4]

- The largest source of theoretical uncertainty in a<sub>µ</sub> comes from the hadronic term.
- The perturbative QCD fails at a lower energy range.
- The leading order HVP corrections can be safely evaluated at low energy range with dispersion relation (DR).

![](_page_4_Figure_4.jpeg)

[DOI 10.1007/978-3-319-63577]

![](_page_4_Figure_6.jpeg)

# Dispersion relation to calculate $a_{\mu}^{had,LO}$ at lower energy [1,2,5]

• At leading order (LO), i.e.,  $O(\alpha^2)$  The dispersion relation (DR) is given by,

$$a_{\mu}^{had,LO} = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$

- When expressed in the form the kernel function  $\hat{K}(s) = \frac{3s}{m_{\pi}^2}K(s)$ , it rises from  $\hat{K}(4M^2) \approx 0.63$  at the two pion threshold to its asymptotic value of 1 in the limit of large s.
- R(s) is the so-called (hadronic) R-ratio defined by,

$$R(s) = rac{\sigma^0 \left( e^+ e^- 
ightarrow ext{hadrons } (+\gamma) 
ight)}{\sigma_{ ext{pt}}}, \quad \sigma_{ ext{pt}} = rac{4\pi lpha^2}{3s}$$

• The  $\sigma^0$  is the total hadronic cross section in the dispersion integral must be the bare cross section, excluding effects from vacuum polarization (VP).

### The ISR approach

 The reduced collision energy, because of the ISR, s' is given by

$$s'=s\left(1-rac{2E_{\gamma}^{*}}{\sqrt{s}}
ight),$$

where  $E_{\gamma}^*$  is the ISR photon energy.

 This is excellent way to get the final state mass spectrum allowing us to get the values from threshold to wider range in a single configuration of the e<sup>+</sup>e<sup>-</sup>storage rings.

![](_page_6_Figure_5.jpeg)

![](_page_6_Figure_6.jpeg)

# Advantage of working with Belle-II

- The most important channel is the two-pion channel, which contributes more than 70 % of  $a_{\mu}^{HVP,LO}$ .
- Precision in the measurement is limited by the systematical uncertanity.

![](_page_7_Picture_3.jpeg)

- With a new luminosity world record of  $4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$  luminosity and a data sample of approximately  $428 \text{fb}^{-1}$  already collected by Belle II, we have sufficient information to make measurements of  $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$  with systematic uncertanity down upto 0.5%.
- It will improve the theoretical calculation of the leading-order HVP contribution.

#### • MC:

- SkimMC14rd\_f:  $\mu^+\mu^-, \pi^+\pi^-, \tau^+\tau^-$ , qqbar
- MC13a:  $\pi^+\pi^-$  (signal, 1e7)

#### • Selection Criteria

- ISR (highest  $E^*$  in case of multiple candidates),
  - $E_{ISR}^* > 2$  GeV,
  - In ECL inner barrel: [32.2+5, 128.7-7] degree
- 2 tracks:
  - dr < 2.0, abs(dz) < 5.0, p > 1.0
  - in KLM barrel : [47.0+5, 122.0-5] degree

•  $M_{\pi\pi} < 3.5 GeV$ 

# Tracking efficiency [7]

• The efficiency as a function of the di-pion mass is defined as

![](_page_9_Figure_2.jpeg)

• A 1C kinematic fit is used to select  $\pi^+\pi^-\gamma$  events for tracking efficiency studies.

![](_page_9_Figure_4.jpeg)

- Used the basf2 software to extract the kinematic information of final state particles using simulated data set.
- Compared the generator level and reconstruction level information to check the detection efficiency of the detector.
- Applied the concept of 1C fit and cross checked with the data.

Plots for  $\pi^+$  reconstruction using the  $\pi^-$  and ISR four-momentum and comparison with data

#### 3D-momentum plots of $\pi^+$ assuming it is missing

• Gen-level data is used both for calculation as well as for comparing

![](_page_12_Figure_2.jpeg)

## Polar angle (theta) plots of $\pi^+$ assuming it is missing

• Gen-level data is used both for calculation as well as for comparing

![](_page_13_Figure_2.jpeg)

# Azimuthal angle (phi) plots of $\pi^+$ assuming it is missing

#### • Gen-level data is used both for calculation as well as for comparing

![](_page_14_Figure_2.jpeg)

# Plots for comparing reconstructed tracks with generator level information

## Comparing the $\pi^+$ data at reco level vs generator level

![](_page_16_Figure_2.jpeg)

#### Comparing the $\pi^-$ data at reco level vs generator level

![](_page_17_Figure_2.jpeg)

## Comparing the $\pi^+$ data at reco level vs generator level

![](_page_18_Figure_2.jpeg)

### Comparing the $\pi^-$ data at reco level vs generator level

![](_page_19_Figure_2.jpeg)

## Comparing the $\pi^+$ data at reco level vs generator level

![](_page_20_Figure_2.jpeg)

#### Comparing the $\pi^-$ data at reco level vs generator level

![](_page_21_Figure_2.jpeg)

## Comparing the $\pi^+$ data at reco level vs generator level

![](_page_22_Figure_2.jpeg)

#### Comparing the $\pi^-$ data at reco level vs generator level

![](_page_23_Figure_2.jpeg)

## Delta Phi

![](_page_24_Figure_2.jpeg)

- The anomalous magnetic moment of muon is an important number with a possibility of exploring the new physics.
- Currently we have  $a_{\mu}^{exp} = 116592040(54) \times 10^{-11}$ , and  $a_{\mu}^{exp} = 116592061(41) \times 10^{-11}$  resulting  $\Delta a_{\mu} = 251(59) \times 10^{(-14)}$ . [6]
- It is not only the most precisely measured quantity in particle physics, but theory and the experiment lie apart by 4.2 standard deviations.
- The  $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$  data from Belle-II will help in calculating more precise results.

- Complete tracking efficiency study on MC then apply to the data.
- Apply similar technique to calculate particle identification corrections.
- Preliminary measurement of normalization mode  $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ by Summer 2023.
- First measurement of  $a_{\mu}(HVP)$  by Summer 2024.

#### References

- 1 T. Aoyama et al. "The anomalous magnetic moment of the muon in the Standard Model". In: Physics Reports 887 (2020), pp. 1-166.
- 2 C. Bouchiat and L. Michel. "Resonance in meson- meson scattering and the anomalous magnetic moment of the meson".
- 3 M. Davier et al. "A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment". In: The European Physical Journal C 80.3 (2020).
- 4 W. Gohn. The muon *g*-2 experiment at Fermilab. 2016. arXiv: 1611.04964
- 5 M. Gourdin and E. De Rafael. "Hadronic contributions to the muon g-factor". In: Nuclear Physics B 10.4 (1969), pp. 667-674.
- 6 B. Abi *etal.*, "Measurement of the Positive Muon Anomalous Magnetic Moment" PhysRevLett.126.141801 (2021)
- 7 J. P. Lees et al. "Precise measurement of the  $e + e \rightarrow \pi + \pi (\gamma)$  cross section with the initial-state radiation method at BABAR.

Thank you

## Backup slides

#### Relation between DR and data

• The cross section for the process  $e^+e^- \to X$  is related to the  $\sqrt{s'}$  spectrum of  $e^+e^- \to X\gamma_{\rm ISR}$  events through

$$\frac{dN_{X\gamma_{\rm ISR}}}{d\sqrt{s'}} = \frac{dL_{\rm ISR}^{\rm eff}}{d\sqrt{s'}} \varepsilon_{X\gamma} \left(\sqrt{s'}\right) \sigma_X^0 \left(\sqrt{s'}\right),$$

where  $dL_{\rm ISR}^{\rm eff}/d\sqrt{s'}$  is the effective ISR luminosity,  $\varepsilon_{X\gamma}$  is the full acceptance for the event sample, and  $\sigma_X^0$  is the 'bare' cross section for the process  $e^+e^- \rightarrow X$  (including additional FSR photons), in which the leptonic and hadronic vacuum polarization effects are removed.

• This eq applies equally to  $X = \pi \pi(\gamma)$  and  $X = \mu \mu(\gamma)$  final states, so that the ratio of cross sections is directly related to the ratio of the pion to muon spectra as a function of  $\sqrt{s'}$ . Specifically, the ratio  $R_{\exp}\left(\sqrt{s'}\right)$  of the produced  $\pi \pi(\gamma)\gamma_{\rm ISR}$  and  $\mu \mu(\gamma)\gamma_{\rm ISR}$  spectra, obtained from the measured spectra corrected for full acceptance, can be expressed as:

$$R_{\text{exp}}\left(\sqrt{s'}\right) = \frac{\frac{dN_{\pi\pi(\gamma)\gamma_{\text{SR}}}^{\text{prod}}}{\frac{ds_{\mu}^{\text{s}}}{\text{prod}}}}{d\sqrt{s'}\gamma_{\text{ISR}}}$$
$$= \frac{\sigma_{\pi\pi(\gamma)}^{0}\left(\sqrt{s'}\right)}{\left(1 + \delta_{\text{FSR}}^{\mu\mu}\right)\sigma_{\mu\mu(\gamma)}^{0}\left(\sqrt{s'}\right)}$$
$$= \frac{R^{0}\left(\sqrt{s'}\right)}{\left(1 + \delta_{\text{FSR}}^{\mu\mu}\right)\left(1 + \delta_{\text{add.FSR}}^{\mu\mu}\right)}$$

• The 'bare' ratio  $R^0$  (no vacuum polarization, but additional FSR included), which enters the VP dispersion integrals, is given by

$$R^{0}\left(\sqrt{s'}\right) = \frac{\sigma_{\pi\pi(\gamma)}^{0}\left(\sqrt{s'}\right)}{\sigma_{\rm pt}\left(\sqrt{s'}\right)}$$

where  $\sigma_{\rm pt} = 4\pi \alpha^2 / 3s'$  is the cross section for pointlike charged fermions.

This way of proceeding considerably reduces the uncertainties related to the effective ISR luminosity function when determined through

$$\frac{d\mathcal{L}_{\rm ISR}^{\rm eff}}{d\sqrt{s'}} = \mathcal{L}_{ee} \frac{dW}{d\sqrt{s'}} \left(\frac{\alpha \left(s'\right)}{\alpha(0)}\right)^2 \frac{\varepsilon_{\gamma_{\rm ISR}} \left(\sqrt{s'}\right)}{\varepsilon_{\gamma_{\rm ISR}^{\rm MC}} \left(\sqrt{s'}\right)}$$

• Dirac eq. - 
$$i \frac{\partial \psi}{\partial t} = \left( \frac{(-i\nabla - e\mathbf{A})^2}{2m} - 2 \frac{e}{2m} \mathbf{S} \cdot \mathbf{B} + e\varphi \right) \psi$$