$Y_b \rightarrow \phi \eta_b$ Analysis

L.Nayak¹ R.Dhamija¹ S.Nishida² A.Giri¹

IIT, Hyderabad¹ KEK^2

Belle Analysis Workshop

December 16, 2022

Introduction

Search for $Y_b \rightarrow \phi \eta_b$:

- Belle measured $\mathcal{B}(\Upsilon(4S) \rightarrow h_b(1P)\eta) = (2.18 \pm 0.21) \times 10^{-3}$ which is the unexpectedly large as compared to $\Upsilon(4S) \rightarrow \Upsilon(1S, 2S)\pi\pi$ decay \mathcal{B} ($\mathcal{O}(10^{-5})$).
- Belle has set an upper limit on $\Upsilon(4S,5S) \rightarrow \omega \eta_b$ decay mode at 90% CL as follows;

 - $\mathcal{B}(\Upsilon(5S) \to \omega \eta_b(1S)) < 1.5 \times 10^{-3}$
- This result is seven times lower than the value for $\Upsilon(4S) \rightarrow h_b(1P)\eta$.
- $\Upsilon(4S, 5S) \rightarrow \omega \eta_b$ decay mode is predicted in some tetra-quark predictions but, there is no theory prediction of $Y_b \rightarrow \phi \eta_b$ yet. We might be able to give some information to these $\Upsilon(4S, 5S) \rightarrow \omega \eta_b$ predictions as well as related to the large BF of $\Upsilon(4S) \rightarrow h_b(1P)\eta$ decay mode.

Analysis Plan:

- $Y_b \rightarrow \phi \eta_b$ with scan data Lopa, Rashmi
- $\Upsilon(4S) \rightarrow \phi \eta_b$ with Belle II data Jittapan
- $\Upsilon(4S,5S) \rightarrow \phi \eta_b$ with Belle data (optional)

$$Y_b \to \phi \eta_b$$

Data Sample

- 1M signalMC events generated using Pokhara-EvtGen generator in Basf2.
- MC14_ri_d sample is used for the background study at 10.75 GeV CM energy (9.58 /fb).

- $e^+e^- \to q\bar{q}(q = u, d, s, c),$ $e^+e^- \to B^0\bar{B}^0, B^+B^-, BB^*, B^*B^*$ and $e^+e^- \to \tau^+\tau^-, \mu^+\mu^-$
- Global tag used for non $\Upsilon(4S)$ energy: mc_nominal_beam_config_10751
- Basf2 release used: 06-00-03

Decay Table

Decay vpho 1.0 phi eta_b HELAMP 1.0 0.0 0.0 0.0 -1.0 0.0; Enddecay

End

We set the beam energy as below to make ϕ η_b are produced from e^+e^- collisions at \sqrt{s} = 10.75 GeV.

ecms = 10.751 beamparameters.add_beamparameters(main, name="Yb10775", E_cms = ecms)

L.Nayak, R.Dhamija (IITH)

Analysis Method

Reconstruction:

- $Y_b \rightarrow \phi$; $\phi \rightarrow K^+K^-$
- Since the decay of η_b is not known, we reconstruct ϕ and look at the recoil mass (M_{recoil}).

•
$$M_{\text{recoil}} = \sqrt{(\sqrt{s} - E_{\phi}^*)^2 - (p_{\phi}^*)^2}$$

Pre-selections:

- abs(d0)<0.5cm, abs(z0)<2cm
- kaonID_noSVD>0.6
- $M[\phi] \in [1.01, 1.03] \text{ GeV}/c^2$
- $M_{\text{recoil}} \in [9.2, 9.6] \text{ GeV}/c^2$
- vertex treefit is performed.

L.Nayak, R.Dhamija (IITH)

Distributions in GenericMC

Applied cuts:

$$\begin{split} \mathsf{M}[\phi] &\in [1.01, 1.03] \; \text{GeV}/c^2 \\ \mathsf{M}_{\mathsf{recoil}} &\in [9.2, 9.6] \; \text{GeV}/c^2 \\ \mathsf{R2} < \! 0.3 \; (7\% \text{ signal loss, } 34.8\% \text{ background rejection}) \end{split}$$

Recoil Mass Distributions

Assumed $\Upsilon(4S)$ cross-section and some ${\cal B}$ to scale the signal MC.

 $\epsilon_{sig} = 10.23\%$

SignalPDF: CrystalBall + Bifurcated Gaussian + Gaussian with common mean BkgPDF: 3^{rd} order Chebyshev Polynomial

genericMC log scale $\times 10^3$ 2.2 Events / (0.004 GeV/c²) Events / (0.004 GeV/c² 00 00 2F Nbkg = 151675 ± 431 $sia = 41 \pm 184$ $Nsig = 41 \pm 184$ 1.8 1.6 المتلافق فليتعلم فسعنط 1.4E 1.2 0.8 10 = 0.6 0.4 0.2 Pull Pul 92 9.5 9.3 9.3 9.4 9.6 92 9.4 9.5 9.6 M_{recoil} (GeV/c²) M_{recoil} (GeV/c²)

• We fit the background distribution with signalpdf + bkgpdf. All the parameters are fixed.

• We obtained 41 \pm 184 events and estimated the upper limit by taking the value of 1.28 σ .

- luminosity (\mathcal{L}_{int}) = 9.58/fb (Y(10751) scan)
- generated signal events = 1 M
- $\epsilon_{sig} = 10.23\%$
- UL @ 90% CL = $41 + (184 \times 1.28) = 276.52$

$$\mathcal{B}(Y_b \to \phi \eta_b) imes$$
 cross-section $= rac{\mathsf{UL}}{\mathcal{L}_{int} imes \epsilon_{sig}} = 2.82 imes 10^{-4} \ nb$

- 1M signal MC generated.
- Analyzed MC14 sample.
- Looked at the recoil mass distribution with some selections applied.
- 1D fit performed.
- Estimated $\mathcal{B}(UL) \times \text{cross-section}$.

Future Plans

• Will work on background suppression.

Thank You