Determination of CKM angle ϕ_3 using $B^- \rightarrow D^{*0} (D^0 (K_s^0 h^+ h^-) \pi^0 / \gamma) h^-$.

Ansu Johnson, Jim Libby

Belle Analysis Week 2022, IISER Mohali

December 17, 2022

1/12

The CKM Matrix

SM accounts for CP violation through Kobayashi-Maskawa mechanism.

• The weak interactions of quarks are described in terms of the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix.

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix} \equiv \hat{V}_{\text{CKM}} \begin{pmatrix} d\\s\\b \end{pmatrix} \quad (1)$$

Wolfenstein parametrisation:

$$V_{\text{Wolf}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^{2}, & \lambda, & A\lambda^{3}(\rho - i\eta \\ & +i\eta\frac{1}{2}\lambda^{2} \end{pmatrix} \\ -\lambda, & 1 - \frac{1}{2}\lambda^{2} & A\lambda^{2}(1 + i\lambda^{2}\eta) \\ A\lambda^{3}(1 - \rho - i\eta), & -A\lambda^{2}, & 1 \end{pmatrix}$$
(2)
$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$
(3)

The unitarity triangle

Figure: Unitarity Triangle

• We are interested in angle ϕ_3 (also denoted as γ) defined as,

$$\phi_3 = \gamma \equiv \arg\left[-V_{ud} V_{ub}^* / V_{cd} V_{cb}^*\right] \tag{4}$$

- ϕ_3 is least well known parameter in CKM triangle.
- Precise measurement will lead to a better understanding of SM description of CP violation.

Extraction of CKM angle ϕ_3

- $B \rightarrow D^{(*)0}h$, $h = \pi, K$ are senstive to ϕ_3
- The tree-level nature of amplitudes involved allows theoretically clean extraction of ϕ_3 .
- The $B \to D^*h$ decay, where $D^* \to D\pi^0$ or $D\gamma$ excibits CP-violating effects when B decays accessible to both D^0 and \overline{D}^0 mesons are studied.
- ϕ_3 is the phase between $b \rightarrow u\bar{c}s$ and $b \rightarrow c\bar{u}s$ transition.
- $b \rightarrow u\bar{c}s$: favored transition
- $b
 ightarrow c \bar{u} s$: CKM and colour suppressed

Extraction of CKM angle ϕ_3

- Common final states allow interference between the two paths
- Interference gives access to the phase
- We can measure ϕ_3 by exploiting the interference between $B^- \rightarrow D^{(*)0}h^$ and $B^- \rightarrow \bar{D}^{(*)0}h^-$ where the D^0 and \bar{D}^0 decay to self-conjugate multi-body final states K_shh : GGSZ method.

We use the final states D^0/\overline{D}^0 decaying to $K_S h^+ h^-$, $h = \pi, K$

BPGGSZ method

- Uses self-conjugate multi-body $D(K_S^0h^-h^+)$ final states
- Sensitivity to ϕ_3 by comparing D Dalitz distributions of B^+ and B^-
- Fit D Dalitz plot with full amplitude model.

$$A_{B^+} = A_{\bar{D}} \left(m_-^2, m_+^2 \right) + r_B e^{i(\delta_B - \phi_3)} A_D \left(m_-^2, m_+^2 \right)$$
(6)

• $A_{\bar{D}}\left(m^2_{-}, m^2_{+}\right)\left[A_{D}\left(m^2_{-}, m^2_{+}\right)\right]$ is the $\bar{D}^0 \to K^0_{\rm S}h^+h^-\left[D^0 \to K^0_{\rm S}h^+h^-\right]$ decay amplitude

• $m_{\pm}^2 =$ squared invariant masses of $K_{
m S}^0 h^+$: D Dalitz plot variables

- In presence of CP Violation expect differences between B⁽⁺⁾ and B⁽⁻⁾ distributions
- The magnitude and position of the differences are driven by the values of r_B,δ_B,φ₃ and the physics of the D decay

э

nac

But model-independent analysis have model uncertainty upto 3° - 9° () + () + ()

BPGGSZ : Binned model-independent approach

- Optimal (non-uniform) binning of the D Dalitz plot which gives the maximum sensitivity to ϕ_3
- Observed yields in each bin can be related to physics parameters of interest and D⁰ decay information

$$\mathbf{N}_{i}^{\pm} = \mathbf{h}_{\mathrm{B}} \pm \left[\mathrm{F}_{i} + \mathbf{r}_{\mathrm{B}}^{2} \overline{\mathbf{F}}_{i} + 2\sqrt{\mathrm{F}_{i} \overline{\mathrm{F}}_{i}} \left(\mathrm{c}_{i} \mathbf{x}_{\pm} + \mathrm{s}_{i} \mathbf{y}_{\pm} \right) \right]$$
(7)

- *h*_B± : Normalization constant
- Physics parameters of interest : (x_±, y_±) = r_B (cos (φ₃ + δ_B), sin (φ₃ + δ_B))
- Amplitude averaged strong phase differences between \overline{D}^0 and D^0 over i^{th} bin are obtained from external charm factories like CLEO and BESIII
- Fraction of pure D^0 decay to bin *i* taking into account the reconstruction and selection efficiency

・ロト ・ 一 マ ト ・ 日 ト

Selection :

- The small D^{*} − D mass difference and conservation of angular momentum in D^{*} → Dπ⁰ and Dγ results in distinctive signatures for B → D^{*}h signal in the Dh invariant mass.
- $B \rightarrow D^*h$ yields obtained with a partial reconstruction technique.
- transverse impact parameter |dr| < 0.2 cm
- $cos\theta \ge -0.6$ for prompt tracks
- binary likelihood-ratio kaonID > 0.2 for D daughters
- $1.85 < M_{D^0} < 1.88 \text{ GeV}/c^2 \rightarrow \text{massKFit}()$ has been applied
- $M_{bc} > 5.25 GeV/c^2$
- -0.13 $< \Delta E <$ 0.18 GeV
- 0.487 $< M_{K_s} <$ 0.508 \rightarrow massKFit() has been applied
- FBDTKs selection
- MC: 1 *ab*⁻¹ MC14ri

伺 ト イヨ ト イヨ ト

8/12

Continuum Suppression

- Training variables: KSFW moments (hoo0,hso02,hso12)
- cosθ_B: The absolute value of the cosine of the angle between the B candidate and the beam axis in the e⁺e⁻ center-of-mass frame
- cos\(\theta_{B}^{ROE}\): Cosine of the angle between the thrust axis of the signal B and the thrust axis of ROE
- B_{thrust} : Magnitude of the signal B thrust axis
- ΔZ : Z(Brec) Z(Btag)
- | qr | : Flavor-tagger output

9/12

Pion Enhanced(binary KaonID < 0.6)

Kaon enhanced (binary KaonID > 0.6)

Truth-matched sample:

 $B \to D^{*0}(\pi^0/\gamma)\pi$

 $B
ightarrow D^{*0}(\pi^0/\gamma) K$

Ansu Johnson

Determination of CKM angle ϕ_3

э

- Aim of this analysis is the model-independent measurement of the CKM angle φ₃ using B → D^{*}h.
- $B \rightarrow DK$ channel is reconstructed in 1 ab^{-1} of generic MC.
- Since the π^0 or γ from the D^* decay is not reconstructed, fully reconstructed $B^- \rightarrow Dh^-$ and partially reconstructed $B^- \rightarrow D^*h^-$ candidates contain the same reconstructed particles and thus appear in the same sample.
- The next immediate step would be to identify the background beneath the signal using truth-matching information and topology analysis.