Search for $B \rightarrow D^* \eta \pi$ Decays

BAW

Vismaya V S

ph20resch11010@iith.ac.in

Dec. 17-18, 2022

Why do we study $B \rightarrow D^* \eta \pi$ decay?

• We are searching for the decay $B \rightarrow D^* \eta \pi$, the study shown here in the Belle II generic MC samples.

- Better understanding of Semi-Leptonic (SL) gap*.
- Improve the reconstruction efficiency of tag side B (hadronic B-tagging).
- First Observation.

*(F. U. Bernlochner, Z. Ligeti, and S. Turczyk, 'A Proposal to solve some puzzles in semileptonic B decays', PRD 85, 094033, 2012])

Introduction

- Recent measurements of B to charm semileptonic decays show a difference between the branching ratio of the sum of exclusive decay rates and the inclusive $b \rightarrow c\ell\nu$ decay rate (the so-called Semi-Leptonic (SL) gap).
- Contributions from not-yet measured $B \to D^* \eta \ell \nu$ decays could be the explanation of such difference.
- Our contribution to the hadronic B

 tagging : to study modes which are not very well known.
- The branching fraction (BF) prediction in our generic MC samples for the corresponding decay is $\rightarrow 0.34\%$

• Eventually enhance the sensitivity for searching rare B decays with missing energy.

B decay	$B^{+} BF (\%)$		B^0 BF (%)	
	Belle	Belle II	Belle	Belle II
$B \rightarrow D^* \eta \pi^-$	0.65	0.27	0.76	0.34
$B \to D \eta \pi^-$	0.23	0.29	0.28	0.34

Motivation

4 Potential modes :

•
$$B^0 \rightarrow D^{*-} \eta \pi^+$$
 ; $\eta \rightarrow \pi^+ \pi^- \pi^0$

- $B^0 \rightarrow D^{*-} \eta \pi^+$; $\eta \rightarrow \gamma \gamma$
- $B^+ \rightarrow \bar{D^{*0}}\eta\pi^+$; $\eta \rightarrow \pi^+\pi^-\pi^0$
- $B^+ \rightarrow \bar{D^{*0}}\eta\pi^+$; $\eta \rightarrow \gamma\gamma$
- Where, $D^{(*)}
 ightarrow D^0 \pi$; $D^0
 ightarrow K \pi$

- BF for $\bar{B^0} \rightarrow D^{*+} \omega \pi^-$: (2.3 ±0.11 ± 0.14)×10⁻³ [Belle, PRD 92, 012013, 2015].
- CLEO observed the decay, B⁰ → D^{*−}ωπ⁺ where ω → π⁺π[−]π⁰, same final state as one of our "η"decays [CLEO, PRD 64, 092001, 2001].

$B ightarrow D^{*-} \eta \pi^+$ decay

Signal generation and initial cuts

- 1M signal MC events are generated using basf2 framework for $B^0 \rightarrow D^{*-}\eta \pi^+$ decay where D^* decays to $D^0[K\pi]\pi$ and η decays to 2 photons.
- We have applied impact parameter cuts on all the charged particles and Kaons are selected with $R[K/\pi] > 0.6$.

Variables	Selection Criteria		
$E_{\gamma 1,2}$	> 80 <i>MeV</i>		
M_η	$[0.52, 0.56] GeV/c^2$		
cos helicity	< 0.75		
M_{D^0}	$[1.8495, 1.8795] GeV/c^2$		
ΔM	$[0.1435, 0.1475] GeV/c^2$		
ΔE	[-0.2, 0.2] <i>GeV</i>		
M _{bc}	$> 5.2 GeV/c^{2}$		

• ΔM is the difference between mass of D^{*+} to D^0 .

Mbc and ΔE distribution

• Our next step is to study the background, so we used 300 fb^{-1} of Belle II generic MC which includes $q\bar{q}$, B^+B^- and $B\bar{B}$ samples.

Continuum Suppression

• $\cos \theta_T < 0.8$ and R2 < 0.3 gives a good suppression to continuum background.

• 44% of background has reduced in the signal window of ΔE after applying this criteria.

ΔE distribution after CS

• The variable used to extract the signal events is Δ*E*. Here the background is listed for each sample with the signal component.

ΔE

Fit to extract signal

ΔE fit in signal MC (true signal)

• Signal PDF = 1 Gaussian + 1 Crystal Ball and bkg PDF = 1^{st} order Chebychev polynomial. (*Mbc* > 5.27)

Fit to extract signal

ΔE fit in Generic MC

• Signal pdf = Fixed the signal shape from signal mc except mean and floated background with a 2^{nd} order Chebychev polynomial. (*Mbc* > 5.27)

- Signal efficiency (from fit) = $113909/1M \times 100 = 11.4\%$
- Calculating the BF using the signal events from fit.

$$\mathbf{BF} = \frac{N}{Eff. \times BF(D^{*-} \to \overline{D^0}\pi^-) \times BF(\overline{D^0} \to K^+\pi^-) \times BF(\eta \to \gamma\gamma) \times N_{B\bar{B}}}$$
$$\mathbf{BF} = \frac{982}{0.1139 \times 0.677 \times 0.039 \times 0.3931 \times 300 \times 1.05 \times 10^6}$$

$BF = 0.0026 \pm 0.00017$

- We have reconstructed the decay $B^0 \to D^{*-}\eta\pi^+$ and we found the BF in the generic MC for the preliminary study.
- We have started studying the control sample $B^0 \rightarrow D^{*-}\omega \pi^+$ [Belle collaboration, PRD 92, 012013 ,2015].

Plans :

• Proceed with the control sample study further.

Study of $B\to D^*\omega\pi$

[Belle, PRD 92, 012013, 2015]

- The study has been carried out using a data sample containing 772 million $B\bar{B}$ events collected at the $\Upsilon(4S)$ resonance with the Belle detector.
- Here $D^* \to D^0 [\to K\pi] \pi$ and $\omega \to \pi \pi \pi^0$.
- Signal is extracted by fitting ΔE in the signal window and side band region of M_{ω} .

Study of $B\to D^*\omega\pi$

ΔE and M_{ω} distributions for all sample

- We have tried to recreate the study using the Belle framework by applying the criteria mentioned in this paper**.
- In the M_{ω} Distribution, the $|\Delta E| < 0.034$ has applied and in the ΔE distribution, M_{ω} has taken in the signal window [0.76135,0.80385].
- Here the red component is signal from mixed sample and all others are the background from all the samples separately.

[**Belle, PRD 92, 012013, 2015]