Using Charm Flavour tagger with $D^0 \rightarrow K_s K_s$

Sanjeeda Bharati Das¹, Kavita Lalwani¹, Angelo Di Canto² MNIT Jaipur¹, BNL, USA²

Belle Analysis Workshop (17–18 December, 2022)

Today's talk

- **Goal:** Measurement of CPAsymmetry in $D^0 \rightarrow K_s K_s$.
- Explore the prospect of using Charm Flavour Tagger (CFT):
 - Data Sample & Selection Criteria
 - Physics Motivation for CFT
 - <u>Results</u>: Measurement of CFT Metrics with 200fb⁻¹ for prompt $D^0 \rightarrow K_s K_s$

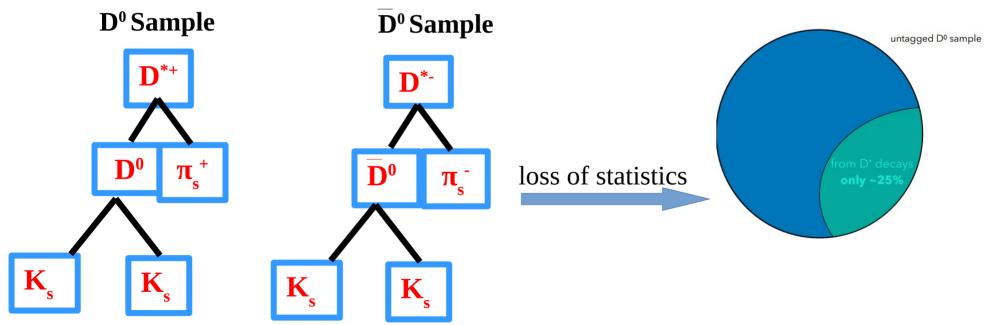
Data Sample & Selection Criteria

Trial Sample & Software version:

- MC15ri, 200fb⁻¹
- light-2207-bengal

Selection Criteria :

- For charged tracks:
 - thetaInCDCAcceptance
 - *dr*<0.5 && *abs*(*dz*)<2
 - [nSVDHits>0] and [nCDCHits>20]
- K_S0:merged is used
 - KS_significanceOfDistance >20
- *For D*⁰:
 - *Dz_p_CMS* > 2.5 *GeV/c*
 - 1.7<Dz_M<2.05 GeV/c²


Physics Motivation

Experimentally measured quantity is raw asymmetry (A_{raw}) defined as:

$$A_{raw} \equiv \frac{N(D^0) - N(\overline{D}^0)}{N(D^0) + N(\overline{D}^0)}$$

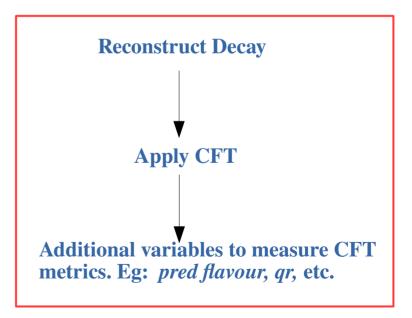
$$\begin{split} N(D^0) &= measured \ yield \ of \ D^{* +} \rightarrow D^0 \pi^+, \ D^0 \rightarrow K_S K_S \ decays \\ N(\bar{D}^0) &= measured \ yield \ of \ D^{* -} \rightarrow D^0 \pi^-, \ \bar{D}^0 \rightarrow K_S K_S \ decays \end{split}$$

To measure CP Asymmetry, we need to identify (tag) the flavor the D^0 meson. One can use the charge of the slow pion (π_s).

 $B(D^0 \rightarrow K_s K_s) = (1.321 \pm 0.023 \pm 0.036 \pm 0.044) \times 10^{-4}$ (*Phys. Rev. Lett.* 119 171801) Due to low branching fraction, it is desirable to have other flavor identifying techniques which can retain statistics in addition to efficient flavour identification.

4

Charm Flavour Tagger (CFT)


1. The Charm Flavour Tagger is a promising new tool (BELLE2-NOTE-PH-2022-044).

2. We explore the possibility of using this new tool for our analysis.

3. We expect to considerably increase the statistics

4. CFT metrics and procedure:

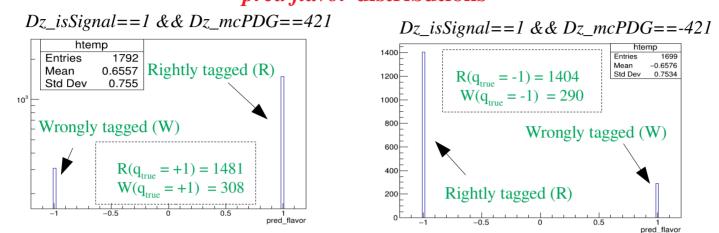
tagging efficiency:	$\epsilon_{tag} = \frac{R+W}{R+W+U}$	
mistag fraction:	$\omega = \frac{W}{R+W}$	
dilution:	$r = 1 - 2\omega $	
tagging power:	$\epsilon_{eff} = \epsilon_{tag} (1 - 2\omega)^2$	
tagging decision:	$q = \pm 1$	
R (W), U: rightly (wrongly) tagged, untagged D^0 candidates q: +1 for D^0 , -1 for $ar{D^0}$		

CFT Metrics

- The meaning of **tagging efficiency** ε_{tag} and the **mistag rate** ω are self explanatory.
- The sensitivity of a measurement that relies on flavor tagging is directly related to the effective **tagging efficiency, or tagging power** (ϵ^{eff}_{tag})

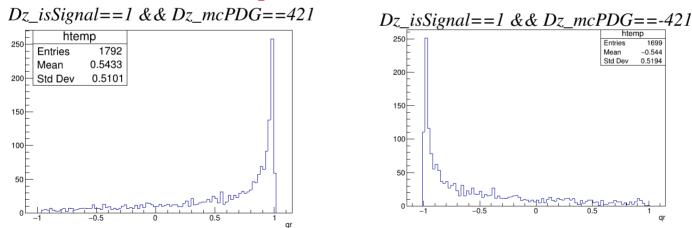
$$\varepsilon_{tag}^{eff} = \varepsilon_{tag} r^2 = \varepsilon_{tag} (1 - 2\omega)^2$$
, where $r = /1 - 2\omega /= \frac{R - W}{R + W}$

is a dilution factor that accounts for candidates that are not correctly tagged.


r = 0 indicates that it is not possible to identify the flavor

r = 1 indicates that the flavor is perfectly known.

The tagging power represents, in essence, the effective statistical reduction of the sample size when a tagging decision is required.


• tagging efficiency, $\varepsilon_{_{tag}}$, and the mistag rate, ω , can be different for charm and anticharm flavors due to charge-asymmetries in detection and reconstruction and as such $\Delta \varepsilon_{_{tag}}$ and $\Delta \omega$

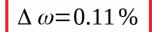
CFT Metrics

pred flavor distributions

qr distributions

in a sample of signal D⁰ mesons:

 $(q_{true} = +1)$ is the fraction of D⁰ that are wrongly classified as anti-D0 $(q_{true} = -1)$ is the fraction of anti-D⁰ mesons wrongly classified as D0


fraction of D^0 mesons that are wrongly classified as \overline{D}^0 :

$$\omega(q_{true} = +1) = \frac{W}{R+W} = \frac{308}{1481+308} = 17.22\%$$

fraction of \overline{D}^0 mesons that are wrongly classified as D^0 :

$$\omega(q_{true} = -1) = \frac{W}{R+W} = \frac{290}{1404+290} = 17.11\%$$

$$\textit{Mistag fraction}(\omega) = \frac{\omega(q_{\textit{true}} = +1) + \omega(q_{\textit{true}} = -1)}{2} = 17.17\%$$

CFT Metrics (Tagging Efficiency, Tagging Power)

Untagged (U) = 8 (qr!=qr, for no cut on qr)

$$U(q_{true} = +1) = 3, U(q_{true} = -1) = 5$$

$$\varepsilon_{tag}(q_{true} = +1) = \frac{R+W}{R+W+U} = \frac{1481+308}{1481+308+3} = 98.33\%$$

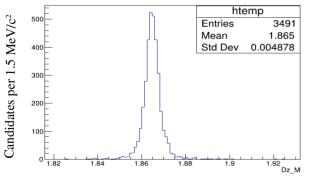
$$\varepsilon_{tag}(q_{true} = -1) = \frac{R + W}{R + W + U} = \frac{1404 + 290}{1404 + 290 + 5} = 99.71\%$$

$$tagging efficiency = \frac{\varepsilon_{tag}(q_{true} = +1) + \varepsilon_{tag}(q_{true} = -1)}{2} = 99.02\%$$

tagging power = $\varepsilon_{eff} (1-2 \omega)^2$ = 42.68%

CFT Metrics

CFT Metrics with 200 fb⁻¹ ($D^0 \rightarrow K_s K_s$)

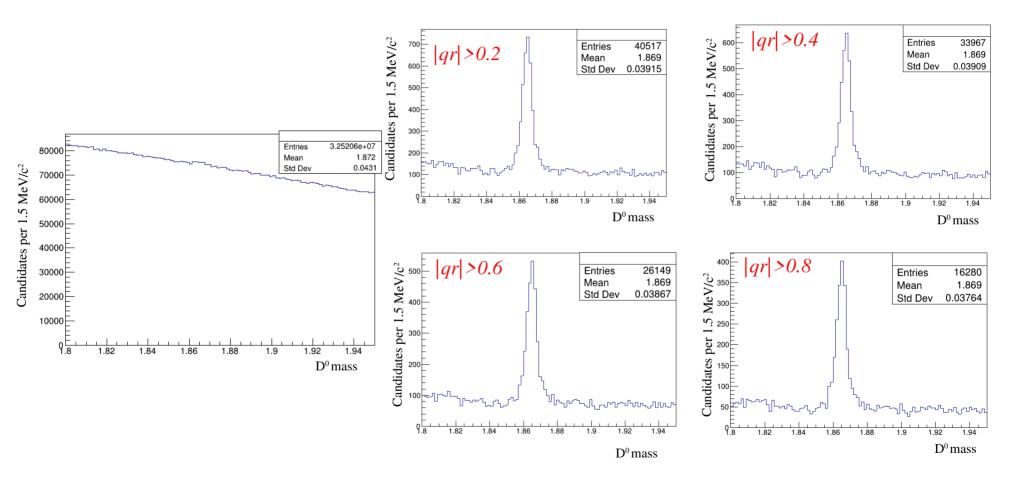

qr	Mistag fraction ω (%)	$\Delta \omega = \omega(q_{true} = +1) - \omega(q_{true} = -1)(\%)$	tagging efficiency ϵ_{tag} (%)	tagging power ϵ_{eff}^{tag} (%)
-	17.17 ± 0.64 %	0.10 ± 1.28 %	$99.769 \pm 0.084~\%$	43.02 ± 1.67 %
>0.2	13.71 ± 0.61 %	-0.41 ± 1.23 %	$89.699 \pm 0.514~\%$	47.26 ± 1.62 %
>0.4	10.45 ± 0.58 %	0.26 ± 1.17 %	78.395 ± 0.697 %	49.06 ± 1.51 %
>0.6	7.16 ± 0.54 %	-0.90 ± 1.08 %	$65.294 \pm 0.806 \ \%$	47.93 ± 1.34 %
>0.8	4.34 ± 0.49 %	-1.67 ± 0.98 %	$49.652 \pm 0.846 \ \%$	41.40 ± 1.13 %

|qr| > 0.4 is the optimal cut for maximum tagging power.

$M(D^0)$ distributions

For prompt sample

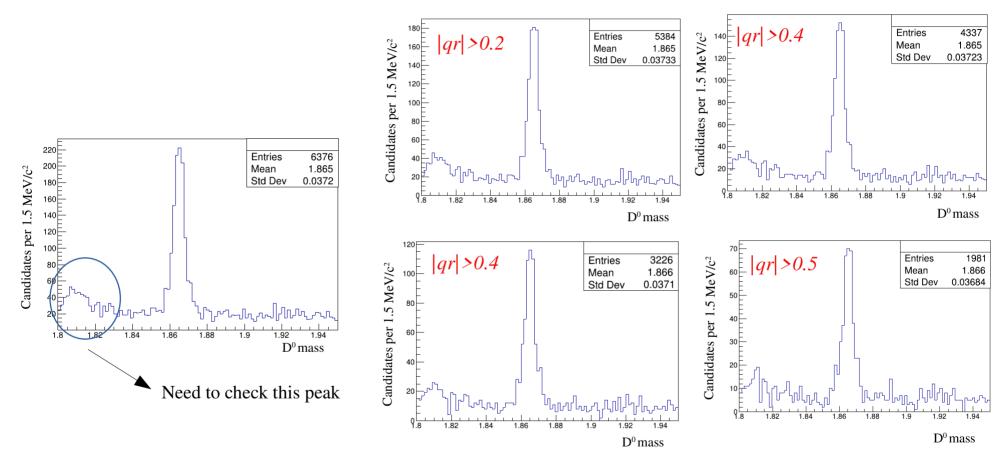
Dst_isSignal==1 htemp Candidates per 1.5 MeV/c² 982 Entries 120 Mean 1.865 Std Dev 0.004968 100-80 60 40 20 0 1.82 **П** I 1.88 1.84 1.86 1.9 Dz_M


For D* tagged sample

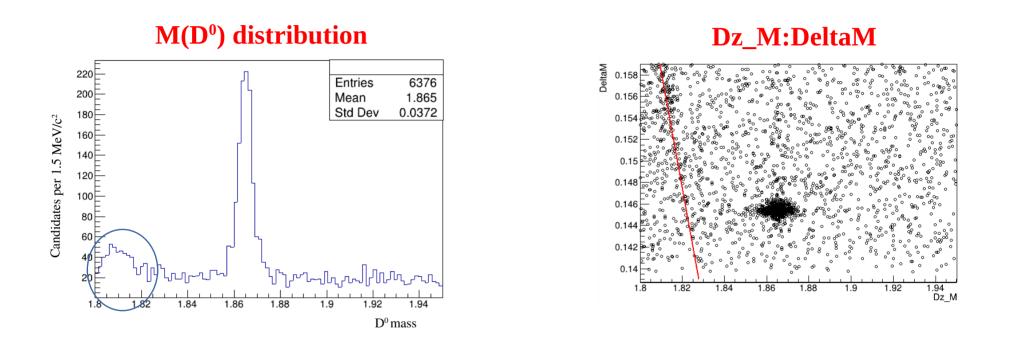
Eve	nts with CFT:
3491	x tagging power (without qr cut)
3491	x 0.43 = 1501
Increase: (1501-982) /982 ~ 53%	

Effect of |qr| criteria, D⁰ Mass distributions (Prompt sample)

Simulation


 $D^0 \longrightarrow K_s K_s$

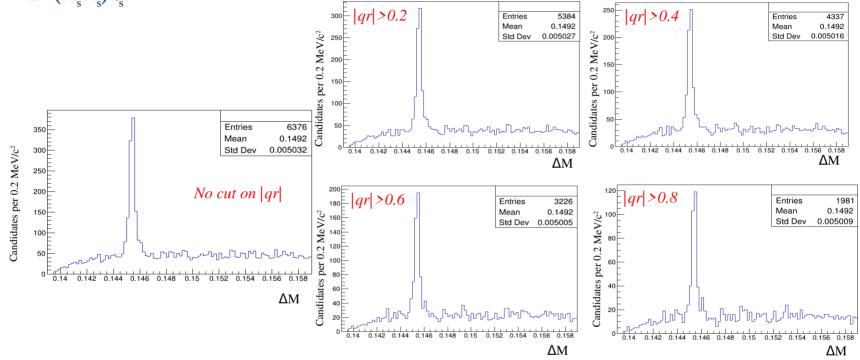
Effect of |qr| criteria, D⁰ Mass distributions (with D* tagged sample)


 $D^* \longrightarrow D^0 (K_s K_s) \pi_s$

Simulation

Background in D⁰ Mass distribution

Simulation



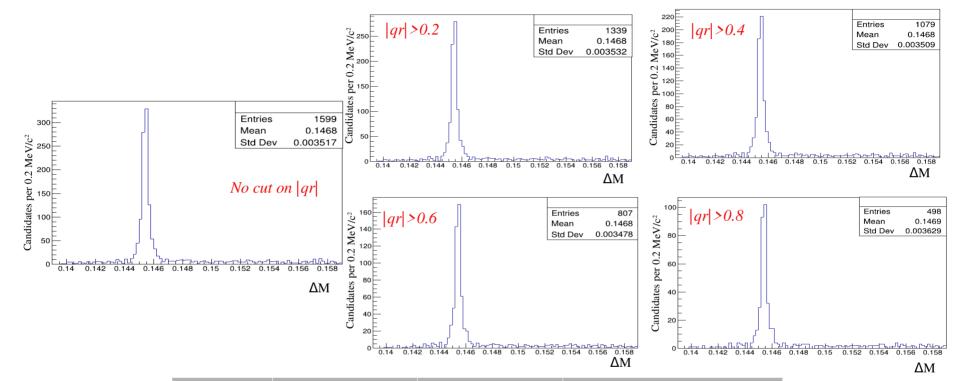
The '*shoulder*' observed in the M(D⁰) distribution, is consistent with a contamination from $D_s^+ \rightarrow K_s K_s \pi^+$ (B = 7.7×10⁻³) decay. The charged pion is used as soft pion candidate.

Effect of |qr| criteria, ΔM distributions (with D* tagged sample)

 $D^* \longrightarrow D^0 (K_s K_s) \pi_s$

Simulation

q r	S (Signal) Dst_isSignal==1	B(Background) Dst_isSignal!=1	Purity: S/S+B
-	982	5394	15.40%
>0.2	823	4561	15.29%
>0.4	664	3673	15.31%
>0.6	491	2735	15.22%
>0.8	303	1678	15.30%


14

Effect of |qr| criteria, ΔM distributions (with D* tagged sample)

 $D^* \longrightarrow D^0 (K_s K_s) \pi_s$

(Signal Window: 1.845 < m(D⁰) < 1.885)

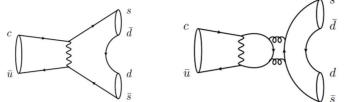
Simulation

q r	S (Signal) Dst_isSignal==1	B(Background) Dst_isSignal!=1	Purity: S/S+B
-	970	629	60.66%
>0.2	813	526	60.72%
>0.4	659	420	61.08%
>0.6	488	319	60.47%
>0.8	302	196	60.64%

15

Summary

- Charm Flavour Tagger is a promising tool for flavour tagging.
- Observed that the CFT suppressing the backgroung in untagged sample of $D^0 \rightarrow K_s K_s$
- Calculated the CFT Metrics and measured a ~53% increase in statistics in untagged sample of $D^0 \rightarrow K_s K_s$.


Ongoing

• Study of signal mode $D^0 \rightarrow K_s K_s$: * Improve the fit for $D^0 \rightarrow K_s K_s$.

Backup Slides

Physics Motivation

• $D^0 \rightarrow K_s K_s$ is a Singly Cabibbo Supressed (SCS) decay which involves the interference of $c \bar{u} \rightarrow s \bar{s}$ and $c \bar{u} \rightarrow d \bar{d}$ transitions.

- Due to this interference, the CP Assymetry (A_{CP}) may be enhanced to an observable level within the Standard Model.
- In Belle, the branching fraction and time-integrated A_{CP} was measured with $D^0 \rightarrow K_s \pi^0$ as the control sample. *(Phys. Rev. Lett. 119 171801)*

$$B(D^{0} \rightarrow K_{s}K_{s}) = (1.321 \pm 0.023 \pm 0.036 \pm 0.044) \times 10^{-4}$$
$$A_{CP}(D^{0} \rightarrow K_{s}K_{s}) = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17) \%$$

- In this analysis, our goal is to measure the time integrated A_{CP} of $D^0 \rightarrow K_S K_S$ using $D^0 \rightarrow K^+ K^-$ as the control sample, when we reach the same statistics as Belle.
- The A_{CP} in $D^0 \rightarrow K^+ K^-$ is measured with 0.11% precision [HFLAV] and is expected to improve. *https://hflaveos.web.cern.ch/hflaveos/charm/cp_asym/charm_asymcp_19Sep19.html*
- Using $D^0 \rightarrow K^+K^-$ as the control sample will make the analysis much simpler and will reduce the systematic uncerainty.

Methodology

Time integrated
$$A_{CP}$$
 is defined as: $A_{CP} \equiv \frac{\Gamma(D^0 \rightarrow K_s^0 K_s^0) - \Gamma(\overline{D}^0 \rightarrow K_s^0 K_s^0)}{\Gamma(D^0 \rightarrow K_s^0 K_s^0) + \Gamma(\overline{D}^0 \rightarrow K_s^0 K_s^0)}$ $\Gamma = partial decay width$

Experimentally measured quantity is raw assymetry (A_{raw}) defined as:

$$A_{raw} \equiv \frac{N(D^{0}) - N(\overline{D}^{0})}{N(D^{0}) + N(\overline{D}^{0})} \qquad \qquad N(D^{0}) = measured yield of D^{*+} \rightarrow D^{0}\pi^{+}, D^{0} \rightarrow K_{s}K_{s} decays$$
$$N(\overline{D}^{0}) = measured yield of D^{*-} \rightarrow D^{0}\pi^{-}, \overline{D}^{0} \rightarrow K_{s}K_{s} decays$$

$$A_{raw} \approx A_{FB}^{D^{*+}} + A_{CP} + A_{\varepsilon}^{\pi_{s}} (relation between A_{CP} \& A_{raw}$$
$$A_{raw}^{K_{s}K_{s}} = A_{FB}^{D^{*+}} + A_{CP}^{K_{s}K_{s}} + A_{\varepsilon}^{\pi_{s}} \Rightarrow (i)$$
$$A_{raw}^{KK} = A_{FB}^{D^{*+}} + A_{CP}^{KK} + A_{\varepsilon}^{\pi_{s}} \Rightarrow (ii)$$
$$A_{CP}^{K_{s}K_{s}} = \left(A_{raw}^{K_{s}K_{s}} - A_{raw}^{KK}\right) + A_{CP}^{KK}$$

 $A_{\epsilon}^{\pi_{s}}$ = assymetry of the detection efficiency of the slow pion A_{FB} = forward backward assymetry