Using Charm Flavour tagger with $D^0 \rightarrow K_{\rm S} K_{\rm S}$

Sanjeeda Bharati Das¹, Kavita Lalwani¹, Angelo Di Canto² M NIT Jaipur¹, BNL, USA²

> Belle Analysis Workshop (17–18 December, 2022)

Today's talk

- Goal: Measurement of CP Asymmetry in $D^0 \rightarrow K_{\rm S} K_{\rm S}$.
- Explore the prospect of using Charm Flavour Tagger (CFT):
	- Data Sample & Selection Criteria
	- Physics Motivation for CFT
	- **Results:** Measurement of CFT Metrics with 200fb⁻¹ for prompt $D^0 \rightarrow K_S K_S$

Data Sample & Selection Criteria

Trial Sample & Software version:

- MC15ri, $200fb^{-1}$
- light-2207-bengal

Selection Criteria :

- *For charged tracks:*
	- *thetaInCDCAcceptance*
	- *dr<0.5 && abs(dz)<2*
	- *[nSVDHits>0] and [nCDCHits>20]*
- *K_S0:merged is used*
	- *KS_significanceOfDistance >20*
- For D^0 :
	- *Dz_p_CMS > 2.5 GeV/c*
	- *1.7<Dz_M<2.05 GeV/c²*

Physics Motivation

Experimentally measured quantity is $\;$ raw asymmetry ($A_{_{\rm raw}}$) defined as:

$$
A_{\text{raw}} \equiv \frac{N(D^0) - N(\overline{D}^0)}{N(D^0) + N(\overline{D}^0)}
$$

$$
N(D^0) = measured yield of D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K_s K_s decays
$$

$$
N(\bar{D}^0) = measured yield of D^{*-} \rightarrow D^0 \pi^-, \bar{D}^0 \rightarrow K_s K_s decays
$$

4

To measure CP Asymmetry, we need to identify (tag) the flavor the D^0 meson. One can usethe charge of the slow pion $(\pi_{\sf s})$.

 $\rm B(D^0\to K_{\rm _S}K_{\rm _S})=~(1.321\pm0.023\pm0.036\pm0.044)~\rm x10^{4}$ *(Phys. Rev. Lett. 119 171801)* Due to low branching fraction, it is desirable to have other flavor identifying techniques which can retain statistics in addition to efficient flavour identification.

Charm Flavour Tagger (CFT)

1.**The Charm Flavour Tagger** *is a promising new tool (BELLE2-NOTE-PH-2022-044).*

2.We explore the possibility of using this new tool for our analysis.

3.We expect to considerably increase the statistics

4.CFT metrics and procedure:

CFT Metrics

- The meaning of **tagging efficiency** *ε tag* and the **mistag rate** *ω* are self explanatory.
- The sensitivity of a measurement that relies on flavor tagging is directly related to the effective **tagging efficiency, or tagging power** (*ε eff tag*)

$$
\varepsilon_{tag}^{eff} = \varepsilon_{tag} r^2 = \varepsilon_{tag} (1 - 2\omega)^2, \text{ where } \qquad r = /1 - 2\omega) = \frac{R \cdot W}{R \cdot W}
$$

is a dilution factor that accounts for candidates that are not correctly tagged.

 $r = 0$ indicates that it is not possible to identify the flavor

 $r = 1$ indicates that the flavor is perfectly known.

The tagging power represents, in essence, the effective statistical reduction of the sample size when a tagging decision is required.

• tagging efficiency, ε_{tag} , and the mistag rate, ω , can be different for charm and anticharm flavors due to charge-asymmetries in detection and reconstruction and as such **Δε tag** and **Δω**

CFT Metrics

pred flavor **distributions**

qr **distributions**

in a sample of signal D^0 mesons:

 $(q_{true} = +1)$ is the fraction of D^0 that are wrongly classified as anti-D0 (q_{true} = −1) is the fraction of anti-D⁰ mesons wrongly classified as D0

fraction of D^0 mesons that are wrongly classified as $\overline{D}{}^0$:

$$
\omega(q_{\text{true}} = +1) = \frac{W}{R+W} = \frac{308}{1481 + 308} = 17.22\%
$$

fraction of \bar{D}^0 mesons that are wrongly classified as D^0 :

$$
\omega(q_{\text{true}} = -1) = \frac{W}{R+W} = \frac{290}{1404 + 290} = 17.11\%
$$

$$
Mistag fraction (\omega) = \frac{\omega(q_{true} = +1) + \omega(q_{true} = -1)}{2} = 17.17\%
$$

CFT Metrics (Tagging Efficiency, Tagging Power)

Untagged (U) = 8 (*qr!=qr, for no cut on qr*)

$$
U(q_{true} = +1) = 3
$$
, $U(q_{true} = -1) = 5$

$$
\varepsilon_{tag}(q_{true} = +1) = \frac{R+W}{R+W+U} = \frac{1481 + 308}{1481 + 308 + 3} = 98.33\%
$$

$$
\varepsilon_{tag}(q_{true} = -1) = \frac{R+W}{R+W+U} = \frac{1404 + 290}{1404 + 290 + 5} = 99.71\%
$$

tagging efficiency =
$$
\frac{\varepsilon_{tag}(q_{true} = +1) + \varepsilon_{tag}(q_{true} = -1)}{2} = 99.02\%
$$

tagging power = $\varepsilon_{\it eff}$ $(1\!-\!2\,\omega)^2\!=\!42.68\,\%$

CFT Metrics

CFT Metrics with 200 fb⁻¹ ($D^0 \longrightarrow K_s K_s$ **)**

 $|qr| > 0.4$ is the optimal cut for maximum tagging power.

M(D⁰) distributions

For prompt sample

For D* tagged sample

Prompt: $D^0 \longrightarrow K_{s}K_{s}$ D^{*} tagged: D^{*}→D⁰ (K_sK_s) π_s

Effect of *|qr|* **criteria, D⁰Mass distributions (Prompt sample)**

 $D^0 \longrightarrow K_{s} K_{s}$

Simulation

Effect of *|qr|* **criteria, D⁰Mass distributions (with D* tagged sample)**

 $\mathbf{D}^*{\longrightarrow} \mathbf{D}^0$ ($\mathbf{K}_{\mathrm{s}}\mathbf{K}_{\mathrm{s}}$)π $_{\mathrm{s}}$

Simulation

Background in D⁰ Mass distribution

Simulation

The 'shoulder' observed in the $M(D⁰)$ distribution, is consistent with a contamination from D_s^+ → K_s K_sπ⁺ (**B** = 7.7×10⁻³) decay. The charged pion is used as soft pion candidate.

Effect of *|qr|* **criteria, ΔM distributions (with D* tagged sample)**

 $\mathbf{D}^*{\longrightarrow} \mathbf{D}^0$ ($\mathbf{K}_{\mathrm{s}}\mathbf{K}_{\mathrm{s}}$)π $_{\mathrm{s}}$

14

Effect of *|qr|* **criteria, ΔM distributions (with D* tagged sample)**

 \mathbf{D}^* \longrightarrow \mathbf{D}^0 $(\mathbf{K}_{\mathrm{s}}\mathbf{K}_{\mathrm{s}})\pi_{\mathrm{s}}$

(Signal Window: 1.845<m(D⁰)<1.885)

Simulation

15

Summary

- Charm Flavour Tagger is a promising tool for flavour tagging.
- **Observed that the CFT** suppressing the backgroung in untagged sample of $D^0 \rightarrow K_sK_s$
- G Calculated the CFT Metrics and measured a \sim 53% increase in statistics in untagged sample of $D^0 \rightarrow K_{S}K_{S}$.

j **Ongoing**

Study of signal mode $D^0 \rightarrow K_{\rm S} K_{\rm S}$: * Improve the fit for $D^0 \rightarrow K_{S}K_{S}$.

Backup Slides

Physics Motivation

 D^0 → K_sK_s is a Singly Cabibbo Supressed (SCS) decay which involves the interference of $c \bar{u}$ → $s \bar{s}$ and $c \overline{u} \rightarrow dd$ transitions.

- Due to this interference, the CP Assymetry (A_{cp}) may be enhanced to an observable level within the Standard \bullet Model.
- In Belle, the branching fraction and time-integrated A_{CP} was measured with $D^0 \to K_{\rm s} \pi^0$ as the control sample. *(Phys. Rev. Lett. 119 171801)*

$$
B(D^{0} \rightarrow K_{S}K_{S}) = (1.321 \pm 0.023 \pm 0.036 \pm 0.044) \times 10^{-4}
$$

\n
$$
A_{CP}(D^{0} \rightarrow K_{S}K_{S}) = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17) \%
$$

- In this analysis, our goal is to measure the time integrated A_{CP} of $D^0 \to K_S K_S$ using $D^0 \to K^*K^-$ as the control 0 sample, when we reach the same statistics as Belle.
- The A_{CP} in $D^0 \to K^+ K^-$ is measured with 0.11% precision [HFLAV] and is expected to improve. *https://hflaveos.web.cern.ch/hflav-eos/charm/cp_asym/charm_asymcp_19Sep19.html*
- 18 Using $D^0 \rightarrow K^+K^-$ as the control sample will make the analysis much simpler and will reduce the systematic uncerainty.

Methodology

Time integrated A_{CP} is defined as:
$$
A_{CP} = \frac{\Gamma(D^0 \to K_S^0 K_S^0) - \Gamma(D^0 \to K_S^0 K_S^0)}{\Gamma(D^0 \to K_S^0 K_S^0) + \Gamma(D^0 \to K_S^0 K_S^0)} \quad \Gamma = \text{partial decay width}
$$

Experimentally measured quantity is raw assymetry (A_{raw}) defined as:

$$
A_{raw} \equiv \frac{N(D^0) - N(\overline{D}^0)}{N(D^0) + N(\overline{D}^0)}
$$
 $N(D^0) = measured yield of D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K_s K_s decays$
 $N(\overline{D}^0) = measured yield of D^{*-} \rightarrow D^0 \pi^-, \overline{D}^0 \rightarrow K_s K_s decays$

$$
A_{raw} \approx A_{FB}^{D^{*+}} + A_{CP} + A_{\epsilon}^{\pi_s} (relation between A_{CP} & A_{raw})
$$
\n
$$
A_{raw}^{K_s K_s} = A_{FB}^{D^{*+}} + A_{CP}^{K_s K_s} + A_{\epsilon}^{\pi_s} \rightarrow (i)
$$
\n
$$
A_{raw}^{KK} = A_{FB}^{D^{*+}} + A_{CP}^{KK} + A_{\epsilon}^{\pi_s} \rightarrow (ii)
$$
\n
$$
A_{CP}^{K_s K_s} = (A_{raw}^{K_s K_s} - A_{raw}^{KK}) + A_{CP}^{KK}
$$

*A*ε ^π*s*=*assymetry of the detection efficiency of the slow pion AFB* = *forward backward assymetry*