Unravelling the mysteries of CKM matrix Belle Analysis Workshop 2022

Rahul Tiwary

TIFR, Mumbai

(□) (何) (日) (日) (日)

Rahul (TIFR) [Unravelling the mysteries of CKM matrix](#page-35-0) 1/36

Flavor in SM

- Flavour in the SM
- Quark Model History
- The CKM matrix

metrology of CKM elements

- CKM elements $|V_{CKM}|$
- CKM phases

K ロ ▶ K 倒 ▶ K ヨ ▶ K ヨ ▶ [로] = 19 Q Q

[Flavor in SM](#page-2-0)

Flavor physics (of quarks) in the SM

Rahul (TIFR) [Unravelling the mysteries of CKM matrix](#page-0-0) 3/36

K □ ▶ K ① ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

Flavour in the SM

Flavour and Colour

Just as ice cream has both color and flavor so do quarks. - Murray Gell-Mann

Standard Model of Elementary Particles

4日下

 $\left\{ \left. \left(\left. \Box \right. \right| \mathbb{R} \right) \times \left(\left. \mathbb{R} \right. \right| \right\}$, $\left\{ \left. \left. \mathbb{R} \right| \right\}$, $\left\{ \left. \mathbb{R} \right| \right\}$

 $E|E \cap Q$

[Flavor in SM](#page-2-0)

Flavour in the SM

▶ CKM matrix transforms the mass eigenstate basis to the flavour eigenstate basis and brings with it a rich variety of observable phenomena

mass eigenstates \neq weak eigenstates

$$
\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}
$$
 (13)

The up-type quark to down-type quark transition probability proportional to the squared magnitude of the CKM matrix elements, $|V_{ii}|^2$

The Quark Model

- Many new particles (a "zoo") discovered in the 60s
- Gell-Mann, Nishijima and Ne'eman introduced the quark "model" (u, d, s) which could elegantly categorise them (the "eight-fold way" - flavour SU(3) symmetry)
- \triangleright Gell-Mann and Pais
	- Strangeness conserved in strong interactions (production)
	- Strangeness violated in weak interactions (decay)

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

The Quark Model

► Can only make colour neutral objects

- ▶ Quark anti-quark mesons $(q\bar{q})$ or three quark baryons (qqq) . Nearly all known states fall into one of these two categories
- ▶ Can also build colour neutral states containing more quarks (e.g. 4 or 5 quark states). Only quite recently confirmed (and still not entirely understood).

(ロ) (何) (日) (日) (日)

Cabibo angle

\blacktriangleright Compare rates of:

- $s \to u$: $K^+ \to \mu^+ \nu_\mu$ $(\Lambda^0 \to p \pi^-$, $\Sigma^+ \to n e^+ \nu_e)$ $d \rightarrow u$: $\pi^+ \rightarrow \mu^+ \nu_\mu$ $(n \rightarrow pe^+ \nu_e)$
- Apparent that $s \to u$ transitions are suppressed by a factor ~ 20
- ▶ Cabibbo (1963) suggested that "down-type" is some ad-mixture of d and s
	- \blacktriangleright The first suggestion of quark mixing
	- ▶ Physical state is an admixture of flavour states

$$
\begin{pmatrix} u \\ d' \end{pmatrix} = \begin{pmatrix} u \\ d\cos(\theta_C) + s\sin(\theta_C) \end{pmatrix}
$$
 (14)

▶ The mixing angle is determined experimentally to be $\sin(\theta_C) = 0.22$.

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ)도 19 Q @

GIM mechanism

- Cabibbo's solution opened up a new experimental problem
	- \blacktriangleright $K^+ \rightarrow \mu^+ \nu_\mu$ had been seen but not K^0 $\rightarrow \mu^+ \mu^ -{\mathcal B}(K_{\rm r}^0\to\mu^+\mu^-)\approx 7\times 10^{-9}$ $-{\cal B}(K_{r}^0 \rightarrow e^+e^-) \approx 1 \times 10^{-11}$ $\blacktriangleright K^+ \rightarrow \pi^0 \mu^+ \nu_\mu$ had been seen but not $K^0_L \rightarrow \pi^0 \mu^+ \mu^-$
		- $-{\mathcal{B}}(K_{r}^{0} \to \pi^{0}\mu^{+}\mu^{-}) \approx 1 \times 10^{-10}$
- If the doublet of the weak interaction is the one Cabibbo suggested, Eq. (14) , then one can have neutral currents

$$
J^0_\mu = \bar{d}'\gamma_\mu (1 - \gamma_5)d'
$$
 (15)

which introduces tree level FCNCs (which we don't see)

• Glashow, Iliopoulos and Maiani (1970) provided a solution by adding a second doublet

$$
\begin{pmatrix} c \\ s' \end{pmatrix} = \begin{pmatrix} c \\ -d\sin(\theta_C) + s\cos(\theta_C) \end{pmatrix}
$$
 (16)

- \blacktriangleright This exactly cancels the term above, Eq. (15)
- Thus FCNC contributions are suppressed via loops

K 분 K K 분 K (분)및 M X Q ⊙

[Quark Model History](#page-5-0)

GIM suppression

► Consider the $s \to d$ transition required for $K^0_L \to \mu^+ \mu^-$ Given that $m_u, m_c \ll m_W$ \blacktriangleright

$$
\mathcal{A} \approx V_{us}V_{ud}^* + V_{cs}V_{cd}^*
$$

= $\sin(\theta_C)\cos(\theta_C) - \cos(\theta_C)\sin(\theta_C)$
= 0

Indeed 2×2 unitarity implies that

 $V_{us}V_{ud}^* + V_{cs}V_{cd}^* = 0$

- ▶ Predicts the existence of the charm quark:
	- \blacktriangleright Kaon mixing
	- Low branching fractions for FCNC decays

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) 900

Parameters of the CKM matrix

- \blacktriangleright 3 x 3 complex matrix
	- \blacktriangleright 18 parameters
- \blacktriangleright Unitary
	- ▶ 9 parameters (3 mixing angles, 6 complex phases)
- Quark fields absorb 5 of these (unobservable) phases
- \blacktriangleright Left with:
	- ▶ 3 mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$
	- one complex phase (δ) which gives rise to CP-violation in the SM

The CKM Matrix $V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{cd} & V_{cd} & V_{cd} \end{pmatrix}$

 \blacktriangleright A highly predictive theory

K ロ K K @ K K 통 K K 통 X 통 를 N 9 Q @

Parameters of the CKM matrix

Absorbing quark phases can be done because under a quark phase transformation

$$
uLi \to ei\phiui uLi, \quad dLi \to ei\phidi dLi
$$
 (20)

and a simultaneous rephasing of the CKM matrix $(V_{jk} \rightarrow e^{i(\phi_j - \phi_k)} V_{jk})$

$$
V_{\text{CKM}} \rightarrow \begin{pmatrix} e^{i\phi_u} & & \\ & e^{i\phi_c} & \\ & & e^{i\phi_t} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} e^{i\phi_d} & & \\ & e^{i\phi_s} & \\ & & e^{i\phi_b} \end{pmatrix} \tag{21}
$$

the charged current $J^{\mu} = \bar{u}_{Li} V_{ii} \gamma^{\mu} d_{Li}$ is left invariant

So all additional quark phases are rephased to be relative to just one

 290

CKM parameterisations

The standard form is to express the CKM matrix in terms of three rotation matrices and one CP-violating phase (δ)

$$
V_{\text{CKM}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{2nd and 3rd gen. mixing} \text{ 1st and 3rd gen. mixing} + \text{CPV phase}} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{2st and 2rd gen. mixing} \text{ 1st and 3rd gen. mixing} + \text{CPV phase}} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{2st and 2rd gen. mixing}} \text{ (22)}
$$

$$
= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{-i\delta} & -c_{13}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}
$$
 (23)

where

$$
c_{ij} = \cos(\theta_{ij}) \quad \text{and} \quad s_{ij} = \sin(\theta_{ij})
$$

 \sim

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ)도 19 Q @

CKM parameterisations

- Emprically $s_{12} \sim 0.2$, $s_{23} \sim 0.04$, $s_{13} \sim 0.004$
- ► CKM matrix exhibits a very clear hierarchy
- The so-called Wolfenstein parameterisation exploits this
- Expand in powers of $\lambda = \sin(\theta_{12})$
- ► Use four real parameters which are all $\sim O(1)$, (A, λ, ρ, η)

The CKM Wolfenstein parameterisation

$$
V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \tag{24}
$$

- \blacktriangleright The CKM matrix is almost diagonal
	- Provides strong constraints on NP models in the flavour sector
- Have seen already that quark masses also exhibit a clear hierarchy
- The flavour hierarchy problem
	- \blacktriangleright Where does this structure come from?

KED KARD KED KED EIE VAA

CKM Unitarity Constraints

- The unitary nature of the CKM matrix provides several constraints, $VV^{\dagger} = \mathbb{1}$
- \triangleright The ones for off-diagonal elements consist of three complex numbers summing to 0
	- \blacktriangleright Hence why these are often represented as triangles in the real / imaginary plane (see next slide)

Constraints along diagonal

$$
|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1
$$

\n
$$
|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1
$$

\n
$$
|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1
$$

Constraints off-diagonal

$$
V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0
$$

\n
$$
V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0
$$

\n
$$
V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0
$$

$$
|V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 = 1
$$

\n
$$
|V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1
$$

\n
$$
V_{ud}V_{td}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0
$$

\n
$$
|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 = 1
$$

\n
$$
V_{cd}V_{td}^* + V_{us}V_{ts}^* + V_{ub}V_{tb}^* = 0
$$

\n
$$
V_{cd}V_{td}^* + V_{cs}V_{ts}^* + V_{cb}V_{tb}^* = 0
$$

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

CKM Unitarity Triangles and the Jarlskog Invariant

 \triangleright The off-diagonal constraints can be represented as triangles in the complex plane

- All the triangles have the equivalent area (known as the Jarlskog invariant), $J/2$
- J is a phase convention independent measure of CP -violation in the quark sector

$$
|J| = \mathcal{I}m(V_{ij}V_{kl}V_{kj}^*V_{il}^*) \quad \text{for } i \neq k \text{ and } j \neq k
$$
 (25)

In the standard notation

$$
J = c_{12}c_{13}^2c_{23}s_{12}s_{23}s_{13}\sin(\delta)
$$
 (26)

 \triangleright The small size of the Euler angles means J (and CP -violation) is small in the SM

[Metrology of CKM](#page-16-0)

Metrology of CKM matrix

Rahul (TIFR) [Unravelling the mysteries of CKM matrix](#page-0-0) 17/36

K □ ▶ K ① ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

Measuring CKM matrix elements: $|V_{ud}|$

Measuring V_{ud}

- ▶ Compare rates of neutron, n^0 , and muon, μ^- , decays
- \blacktriangleright The ratio is proportional to $|V_{ud}|^2$
- $|V_{ud}| = 0.947417 \pm 0.00021$

 \blacktriangleright $|V_{ud}|\approx 1$

4 何 ▶ 4 국 ▶ 4 국

$$
\frac{d\Gamma(n \to pe^- \overline{\nu}_e)}{dx_p} = \frac{G_F^2 m_n^2}{192\pi^2} |V_{ud}|^2 f(q^2)^2 \left(x_p^2 - 4\frac{m_p^2}{m_n^2}\right)^{3/2}, \text{ where } x_p = \frac{2E_p}{m_n}
$$

Measuring CKM matrix elements: $|V_{us}|$

Measuring V_{us}

- ▶ Compare rates of kaon, K^- , and muon, μ^- , decays
- \triangleright The ratio is proportional to $|V_{us}|^2$
- $|V_{us}| = 0.2248 \pm 0.0006$

$$
\blacktriangleright |V_{us}| \approx \sin(\theta_C) \approx \lambda
$$

$$
\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

K ロ ▶ K 倒 ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) 9000

$$
\frac{d\Gamma(\overline{K}^0\to\pi^+e^-\overline{\nu}_e)}{dx_\pi}=\frac{G_F^2m_K^2}{192\pi^2}|V_{us}|^2f(q^2)^2\left(x_\pi^2-4\frac{m_\pi^2}{m_K^2}\right)^{3/2},\quad\text{where}\quad x_\pi=\frac{2E_\pi}{m_K}
$$

Measuring CKM matrix elements: $|V_{cd}|$ and $|V_{cs}|$

Measuring V_{cd} and V_{cs}

- Early measurements used neutrino DIS
- Now use semi-leptonic charm decays, $D^0 \rightarrow \pi^- \ell^+ \nu_\ell$ (V_{cd}) and $D^0 \rightarrow K^- \ell^+ \nu_{\ell}$ (V_{cs})

$$
\blacktriangleright |V_{cd}| = 0.220 \pm 0.005
$$

- $|V_{cs}| = 0.995 \pm 0.016$
- \blacktriangleright $|V_{cd}| \approx \sin(\theta_C) \approx \lambda$
- $|V_{cs}| \approx 1$

∢□ ▶ ∢母 ▶ ∢∃ ▶ ∢∃ ▶ _⊒|主 ∽Q Q

Measuring CKM matrix elements: $|V_{cb}|$

Measuring V_{cb}

- ► Compare rates of $B^0 \rightarrow D^{*-}\ell^+\nu_{\ell}$ and muon decays
- Ratio is proportional to $|V_{cb}|^2$
- $|V_{cb}| = 0.0405 \pm 0.0013$

$$
\blacktriangleright |V_{cd}| \approx \sin^2(\theta_C) \approx \lambda^2
$$

$$
\frac{d\Gamma(b \to u_{\alpha}\ell^{-} \overline{\nu}_{\ell})}{dx} = \frac{G_{F}^{2}m_{b}^{5}}{192\pi^{2}}|V_{\alpha b}|^{2} \left(2x^{2}\left(\frac{1-x-\xi}{1-x}\right)^{2}\left(3-2x+\xi+\frac{2\xi}{1-x}\right)\right)
$$

where $\alpha = u, c, \xi = \frac{m_{\alpha}^{2}}{m_{b}^{2}}, x = \frac{2E_{l}}{m_{b}}$

Rahul (TIFR) [Unravelling the mysteries of CKM matrix](#page-0-0) 21/36

Measuring CKM matrix elements: $|V_{ub}|$

 \blacktriangleright There are three ways to determine V_{ub}

- 1. "Inclusive" decays of $b \to u \ell^- \overline{\nu}_{\ell}$
	- Of course there are no bare quarks so we are really looking at a sum of exclusive decays of the form $B_{(s)}^{0(-)} \to \pi^{0(-)} \ell^- \overline{\nu}_{\ell} X$
- 2. "Exclusive" decays e.g. $\overline{B}{}^0 \rightarrow \pi^+ \ell^- \overline{\nu}_{\ell}$
- 3. Leptonic "annhilation" decays e.g. $B^+ \rightarrow \ell^+ \nu_{\ell}$

These each come with various requirements on theory (form factors) and the results have historically been rather inconsistent

- \blacktriangleright This is typical in flavour physics
- In the discrepancy a theory issue, an experimental issue or New Physics (or some combination)?

$$
\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

KOD KARD KED KED EN AQA

[Metrology of CKM](#page-16-0)

Measuring CKM matrix elements: $|V_{ts}|$ and $|V_{td}|$

There is no top decay but can obtain indirect measurements from the loops which appear in B^0 and B_s^0 mixing

Ratio of frequencies for B^0 and B_s^0 :

$$
\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s^0}}{m_{B^0}} \frac{f_{B_s^0}^2}{f_{B^0}^2} \frac{B_{B_s^0}^2}{B_{B^0}} \frac{|V_{ts}|^2}{|V_{td}|^2} = \frac{m_{B_s^0}}{m_{B^0}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}
$$
(9)

Measuring CKM matrix elements: $|V_{ts}|$ and $|V_{td}|$

- \blacktriangleright B^0 and B_s^0 oscillation frequencies (which we use to get constraints on V_{td} and V_{ts}) measured at LEP. Tevatron. B-factories and LHCb
- Most precise measurements now come from LHCb

Measuring CKM matrix elements: : $|V_{th}|$

Measuring V_{tb}

- \triangleright Use single top production at the Tevatron
- Ratio is proportional to $|V_{tb}|^2$
- $|V_{tb}| = 1.009 \pm 0.0031$

4 ロ ▶ 4 伺 ▶ 4 로 ▶ 4 로 ▶ 그녀는 90409

Measuring CKM phases

- $\blacktriangleright \gamma$ in interference between $b \to u$ and $b \to c$ transitions
- \triangleright β in interference between B^0 mixing and decay
- \triangleright $\beta_s \approx \phi_s$ in interference between B_s^0 mixing and decay
- \triangleright α arises in the interference between different $b \to u$ transitions

$$
V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{-i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5)
$$

Measuring CKM phase: β

- Arises in the interference between $B^0 \to f_{CP}$ and $B^0 \to \overline{B}^0 \to f_{CP}$
- The golden mode is $B^0 \to J/\psi K^0_S$ because the master equations (see Lecture 2) simplify considerably
	- 1. For a B^0 we have no (or at least negligible) CPV in mixing

$$
\left|\frac{q}{p}\right|\approx 1
$$

2. For the $J/\psi K^0_S$ we have a CP-even final state so $f = \bar{f}$ therefore

$$
\lambda_f \equiv \frac{q}{p}\frac{\bar{A}_f}{A_f} = \frac{q}{p}\frac{\bar{A}_{\bar{f}}}{A_{\bar{f}}} \equiv \lambda_{\bar{f}}
$$

3. The B^0 and $\overline{B}{}^0$ amplitudes to f are (almost) identical (can you think what makes them unequal?)

Measuring CKM phase: β

Recall from the master equations (Lecture 2) that

$$
C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \quad D_f = \frac{2\mathcal{R}e(\lambda_f)}{1 + |\lambda_f|^2}, \quad S_f = \frac{2\mathcal{I}m(\lambda_f)}{1 + |\lambda_f|^2}
$$

 \triangleright Giving a time-dependent asymmetry of

$$
\mathcal{A}_{CP}(t) = \frac{\Gamma_{X^0 \to f}(t) - \Gamma_{\overline{X}^0 \to f}(t)}{\Gamma_{X^0 \to f}(t) + \Gamma_{\overline{X}^0 \to f}(t)} = \boxed{\frac{C_f \cos(\Delta mt) - S_f \sin(\Delta mt)}{\cosh(\frac{1}{2}\Delta \Gamma t) + D_f \sinh(\frac{1}{2}\Delta \Gamma t)}}\tag{10}
$$

In the case of $B^0 \to J/\psi K_S^0$ this hugely simplifies as $|\lambda_f|=1$ and $\Delta\Gamma=0$ so that

$$
\mathcal{A}_{CP}(t) = -\mathcal{I}m(\lambda_f)\sin(\Delta mt)
$$
 (11)

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ)도 19 Q @

Measuring CKM phase: β

► Looking into more detail at what λ_f is in the case of $B^0 \to J/\psi K^0_S$

$$
\lambda_{J/\psi K^0_{\rm S}} = \left(\frac{q}{p}\right)_{B^0} \frac{\bar{A}_{J/\psi K^0_{\rm S}}}{A_{J/\psi K^0_{\rm S}}} = \left(\frac{q}{p}\right)_{B^0} \frac{\bar{A}_{J/\psi K^0}}{A_{J/\psi K^0}} \left(\frac{p}{q}\right)_{K^0} \tag{12}
$$

$$
= -\underbrace{\left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*}\right)}_{B^0 \text{ mixing}} \underbrace{\left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}\right)}_{B^0 \to J/\psi K^0} \underbrace{\left(\frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cd}}\right)}_{K^0 \text{ mixing}}
$$
\n
$$
= -e^{-2i\beta} \tag{14}
$$

it's a useful exercise to show this using the equations from Lecture 2 \triangleright So that the time-dependent asymmetry is

$$
\mathcal{A}_{CP}(t) = \pm \sin(2\beta) \sin(\Delta mt)
$$
 (15)

the \pm is for CP-even (e.g. $J/\psi K_{L}^{0}$) or CP-odd (e.g. $J/\psi K_{S}^{0}$) final states

- A theoretically and experimentally clean signature ▶
- Also has a relatively large branching fraction, $O(10^{-4})$ ►

K ロ > K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ) ヨ りんぐ

Measuring CKM phase: α

- Following a similar logic to that of $B^0 \to J/\psi K^0_S$ for β one finds that α arises in the time-dependent asymmetry for modes containing a $b \to u\overline{u}d$ transition
	- For example $B^0 \rightarrow \pi^+ \pi^-$ or $B^0 \rightarrow \rho^+ \rho^-$
- Recalling the master equations with $\Delta \Gamma = 0$
- Nominally we should have $C_f = 0$ and $S_f = \sin(2\alpha)$ to give

$$
\mathcal{A}_{CP}(t) = \pm \sin(2\alpha)\sin(\Delta mt) \tag{23}
$$

exactly equivalent to the extraction of β

- ► However, in this case there is a non-negligible contribution from penguin decays of $b \to d\overline{u}u$
	- Similar in magnitude to the $b \to u\overline{u}q$ transition but has a different weak phase
	- Therefore $C \neq 0$ and $S \neq \pm \sin(2\alpha)$
	- \blacktriangleright How do we deal with the penguin contamination?

Measuring CKM phase: α

- The contributions from the penguin amplitudes can be accounted for using an \blacktriangleright "isopsin analysis"
	- \blacktriangleright Relate the amplitudes for isospin partners

$$
A^{+-} \text{ for } B^0 \to \pi^+ \pi^-, \quad A^{+0} \text{ for } B^+ \to \pi^+ \pi^0, \quad A^{00} \text{ for } B^0 \to \pi^0 \pi^0, \tag{24}
$$

- There is no penguin contribution to A^{+0} and \bar{A}^{-0} because $\pi^{\pm} \pi^{0}$ is a pure isospin-2 state and the QCD-penguin ($\Delta I = 1/2$) only contributes to the isospin-0 final states
- ▶ Obtain isospin triangle relations

$$
A^{+0} = \frac{1}{\sqrt{2}} A^{+-} + A^{00}, \text{ and } \bar{A}^{-0} = \frac{1}{\sqrt{2}} \bar{A}^{+-} + \bar{A}^{00}
$$
(25)

$$
2\Delta \alpha
$$

[Metrology of CKM](#page-16-0)

Measuring CKM phase: γ

- $\blacktriangleright \gamma$ is the phase between $V_{ub}^* V_{ud}$ and $V_{cb}^* V_{cd}$
	- Require interference between $b \to cW$ and $b \to uW$ to access it
	- \triangleright No dependence on CKM elements involving the top
	- \triangleright Can be measured using tree level B decays
- ► The "textbook" case is $B^{\pm} \rightarrow \overleftrightarrow{D}^{0} K^{\pm}$:
	- Transitions themselves have different final states $(D^0$ and $\overline{D}{}^0)$
	- Interference occurs when D^0 and $\overline{D}{}^0$ decay to the same final state f

The crucial feature of these (and similar) decays is that the D^0 can be reconstructed in several different final states [all have same weak phase γ]

Rahul (TIFR) [Unravelling the mysteries of CKM matrix](#page-0-0) 32 / 36

[Metrology of CKM](#page-16-0)

Measuring CKM phase: γ

- ► Use the $B^{\pm} \rightarrow \overleftrightarrow{D}^{0} K^{\pm}$ case as an example:
	- Consider only D decays to CP eigenstates, f_{CP}
	- Favoured: $b \rightarrow c$ with strong phase δ_F and weak phase ϕ_F
	- Supressed: $b \rightarrow u$ with strong phase δ_S and weak phase ϕ_S

Subsequent amplitude to final state f_{CP} is:

$$
B^{-}: A_f = |F|e^{i(\delta_F - \phi_F)} + |S|e^{i(\delta_S - \phi_S)}
$$
\n
$$
(26)
$$

$$
B^{+} : \bar{A}_{f} = |F|e^{i(\delta_{F} + \phi_{F})} + |S|e^{i(\delta_{S} + \phi_{S})}
$$
\n(27)

because strong phases (δ) don't change sign under CP while weak phases (ϕ) do

Rahul (TIFR) [Unravelling the mysteries of CKM matrix](#page-0-0) 33 / 36

 $\sqrt{2}$

Measuring CKM phase: γ

Can define the sum and difference of rates with B^+ and $B^ \blacktriangleright$

Rate difference and sum
\n
$$
|\bar{A}_f|^2 - |A_f|^2 = 2|F||S|\sin(\delta_F - \delta_S)\sin(\phi_F - \phi_S)
$$
\n(28)
\n
$$
|\bar{A}_F|^2 + |A_F|^2 = |F|^2 + |S|^2 + 2|F||S|\cos(\delta_F - \delta_S)\cos(\phi_F - \phi_S)
$$
\n(29)

- ▶ Choose $r_B = \frac{|S|}{|F|}$ (so that $r < 1$) and use strong phase difference $\delta_B = \delta_F \delta_S$
- $\blacktriangleright \gamma$ is the weak phase difference $\phi_F \phi_S$
- Subsequently have two experimental observables which are \blacktriangleright

GLW CP asymmetry

 $\mathcal{A}_{CP} = \frac{\pm 2r_B \sin(\delta_B) \sin(\gamma)}{1 + r_B^2 \pm 2r_B \cos(\delta_B) \cos(\gamma)}$

GLW total rate

$$
\mathcal{R}_{CP} = 1 + r_B^2 \pm 2r_B \cos(\delta_B) \cos(\gamma)
$$

- The $+(-)$ sign corresponds to CP -even (-odd) final states
- ightharpoonup Note that r_B and δ_B (ratio and strong phase difference of favoured and supressed modes) are different for each B decay
- The value of γ is shared by all such decays
- We discussed a myriad of topics under the umbrella of Flavor physics.
- First half focused on the SM, quark model history, and CKM matrix.
- In the second half we talked about metrology of CKM parameters.
- The talk is based on the [course](https://warwick.ac.uk/fac/sci/physics/staff/academic/kenzie/reading.pdf) taken by Prof. Mathew Kenzie.

Flavour in the SM

A brief theoretical interlude which we will flesh out with some history afterwards

▶ Particle physics can be described to excellent precision by a relatively straightforward and very beautiful theory (we all know and love the SM):

$$
\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm Gauge}(A_a, \psi_i) + \mathcal{L}_{\rm Higgs}(\phi, A_a, \psi_i)
$$
 (1)

\blacktriangleright It contains:

- Gauge terms that deal with the free fields and their interactions via the strong and electroweak interactions
- Higgs terms that give rise to the masses of the SM fermions and weak bosons

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ)도 19 Q @

Flavour in the SM

 \blacktriangleright The Gauge part of the Lagrangian is well verified

$$
\mathcal{L}_{\text{Gauge}} = \sum_{j} i \bar{\psi}_j \not\!\!D \psi_j - \sum_{a} \frac{1}{4g_a^2} F_{\mu\nu}^a F^{\mu\nu,a} \tag{2}
$$

▶ Parity is violated by electroweak interactions

Fields are arranged as left-handed doublets and right-handed singlets

$$
\psi = \boxed{Q_L, u_R, d_R, c_R, s_R, t_R, b_R}
$$
quarks (3)

$$
\boxed{L_L, e_R, \mu_R, \tau_R}
$$
leptons (4)

with

$$
Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} c_L \\ s_L \end{pmatrix}, \begin{pmatrix} t_L \\ b_L \end{pmatrix} \text{ and } L_L = \begin{pmatrix} e_L \\ \nu_{eL} \end{pmatrix}, \begin{pmatrix} \mu_L \\ \nu_{\mu L} \end{pmatrix}, \begin{pmatrix} \tau_L \\ \nu_{\tau L} \end{pmatrix}
$$
 (5)

 \blacktriangleright The Lagrangian is invariant under a specific set of symmetry groups: $SU(3)_c \times SU(2)_L \times U(1)_Y$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ)도 19 Q @

Quark Gauge Couplings

► Without the Higgs we have flavour universal gauge couplings equal for all three generations (huge degeneracy)

$$
\mathcal{L}_{\text{quarks}} = \sum_{j}^{3} \underbrace{i\bar{Q}_{j}\rlap{\,/}D_{Q}Q_{j}}_{\text{left-handed doublets}} + \underbrace{i\bar{U}_{j}\rlap{\,/}D_{U}U_{j} + i\bar{D}_{j}\rlap{\,/}D_{D}D_{j}}_{\text{right-handed singlets}}
$$
\n
$$
\text{leptons have been omitted for simplicity}
$$
\n(6)

with the covariant derivatives ▶

$$
D_{Q,\mu} = \partial_{\mu} + ig_s \lambda_{\alpha} G^{\alpha}_{\mu} + ig \sigma_i W^i_{\mu} + iY_Q g' B_{\mu}
$$

\n
$$
D_{U,\mu} = \partial_{\mu} + ig_s \lambda_{\alpha} G^{\alpha}_{\mu} + iY_U g' B_{\mu}
$$

\n
$$
D_{D,\mu} = \partial_{\mu} + ig_s \lambda_{\alpha} G^{\alpha}_{\mu} + iY_D g' B_{\mu}
$$

and
$$
Y_Q = 1/6
$$
, $Y_U = 2/3$, $Y_D = -1/3$

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Yukawa couplings

- In order to realise fermion masses we introduce "Yukawa couplings"
- This is rather ad-hoc. It is necessary to understand the data but is not stable with respect to quantum corrections (the Hierarchy problem).
- ► By doing this we introduce flavour non-universality via the Yukawa couplings between the Higgs and the quarks

$$
\mathcal{L}_{\text{Yukawa}} = \sum_{i,j}^{3} (-\bar{Q}_{L}^{i} Y_{U}^{ij} \tilde{H} u_{R}^{j} - \bar{Q}_{L}^{i} Y_{D}^{ij} H d_{R}^{j} + h.c.)
$$
 (7)

leptons have been omitted for simplicity

Replace H by its vacuum expectation value, $\langle H \rangle = (0, \nu)^T$, and we obtain the quark mass terms $\ddot{}$

$$
\sum_{i,j}^{3} (-\bar{u}_{L}^{i} m_{U}^{ij} u_{R}^{j} - \bar{d}_{L}^{i} m_{D}^{ij} d_{R}^{j})
$$
 (8)

with the quark mass matrices given by $m_A = \nu Y_A$ with $A = (U, D, L)$

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Diagonalising the mass matrices

- ▶ Quark mass matrices, m_U , m_D , m_L , are 3 × 3 complex matrices in "flavour space" with a priori arbitary values.
	- \triangleright We can diagonalise them via a field redefintion

$$
u_L = \hat{U}_L u_L^m, \ \ u_R = \hat{U}_R u_R^m, \ \ d_L = \hat{D}_L d_L^m, \ \ d_R = \hat{D}_R d_R^m \tag{9}
$$

such that in the mass eigenstate basis the matrices are diagonal

$$
m_U^{\text{diag}} = \hat{U}_L^{\dagger} m_U \hat{U}_R, \quad m_D^{\text{diag}} = \hat{D}_L^{\dagger} m_D \hat{D}_R \tag{10}
$$

The right-handed $SU(2)$ singlet is invariant but recall the left-handed $SU(2)$ doublet gives rise to terms like

$$
\frac{g}{\sqrt{2}}\bar{u}_L^i \gamma_\mu W^\mu d_L^i \tag{11}
$$

In the mass basis this then becomes

$$
\frac{g}{\sqrt{2}}\bar{u}_L^i \underbrace{\hat{U}_L^{iij} \hat{D}_L^{jk}}_{\hat{V}_{\text{CKM}}} \gamma_\mu W^\mu d_L^k \tag{12}
$$

This combination, $\hat{V}_{\text{CKM}} = \hat{U}_{L}^{\dagger ij} \hat{D}_{L}^{jk}$, is the physical CKM matrix and generates flavour violating charged current interactions. It is complex and unitary, $VV^{\dagger} = \mathbb{1}$

Flavour in the SM

 \triangleright The gauge part of the SM Lagrangian is invariant under U(3) symmetries of the left-handed doublets and right-handed singlets if the fermions are massless

$$
\mathcal{L}_{\rm Gauge} = \sum_j i\bar{\psi}_j \not{\!D\!\!\!\!/} \psi_j - \sum_a \frac{1}{4g_a^2} F^a_{\mu\nu} F^{\mu\nu,a}
$$

- \triangleright These U(3) symmetries are broken by the Yukawa terms. The only remaining symmetries correspond to lepton number and baryon number conservation
- These are "accidental" symmetries, coming from the particle content, rather than being explicitly imposed

We will return to the CKM matrix and CKM metrology later!

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ 『ヨ ヨ めなね

particle zoo

SU(2) flavour mixing

▶ Four possible combinations from two quarks (u and d)

 $u\overline{u}$, $d\overline{d}$, $u\overline{d}$, $\overline{u}d$

▶ Under SU(2) symmetry the π^0 and η states are members of an isospin triplet and singlet respectively

$$
\pi^0 = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d}), \quad \eta = \frac{1}{\sqrt{2}} (u\overline{u} + d\overline{d})
$$

SU(3) flavour mixing

Introducing the strange quark (under $SU(3)$ symmetry) we now have an octuplet and a singlet

$$
\pi^0 = \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d}), \quad \eta_1 = \frac{1}{\sqrt{3}}(u\overline{u} + d\overline{d} + s\overline{s}), \quad \eta_8 = \frac{1}{\sqrt{6}}(u\overline{u} + d\overline{d} - 2s\overline{s})
$$

 \blacktriangleright The physical states involve a further mixing

 $\eta = \eta_1 \cos \theta + \eta_8 \sin \theta$, $\eta' = -\eta_1 \sin \theta + \eta_8 \cos \theta$

OFFICER KER EIN YOU

Particle zoo

- Can elegantly categorise states by isospin (up/downess) and strangeness
- Also get the excited states which can be categorised in the same way ▶ **Spin-0 Mesons** Spin-1/2 Baryons

CKM mechanism

- In 1973 Kobayashi and Maskawa introduce the CKM mechanism to explain CP -violation
- As we will see this requires a third generation of quark and so they predict the existence of b and t quarks

K □ ▶ K 何 ▶ K 글 ▶ K 글 ▶ _글|님 _のQ Q

CP [violation](#page-44-0)

Meson mixing and CP violation in the SM

K □ ▶ K ① ▶ K 로 ▶ K 로 ▶ 그리는 K) Q (^

Neutral Meson Mixing

- In 1987 the ARGUS experiment observed coherently produced $B^0 \overline{B}{}^0$ pairs and ▶ observed them decaying to same sign leptons
- \blacktriangleright How is this possible?
	- Semileptonic decays "tag" the flavour of the initial state

The only explanation is that B^0 - $\overline{B}{}^0$ can oscillate

Rate of mixing is large \rightarrow top quark must be heavy

Neutral Meson Mixing

- In the SM occurs via box diagrams involving a charged current (W^{\pm}) interaction
- ▶ Weak eigenstates are not the same as the physical mass eigenstates
	- The particle and antiparticle flavour states (via CPT theorem) have equal and opposite charge, identical mass and identical lifetimes
	- ▶ But the mixed states (*i.e.* the physical B_L^0 and B_H^0) can have $\Delta m, \Delta \Gamma \neq 0$

 \blacktriangleright In the SM we have four possible neutral meson states

- ▶ K^0 , D^0 , B^0 , B^0 (mixing has been observed in all four)
- Although they all have rather different properties (as we will see in a second)

- ← 何 ▶ + ヨ ▶ + ヨ ▶ - ヨ |ヨ - つ Q C

Coupled meson systems

 \blacktriangleright A single particle system evolves according to the time-dependent Schrödinger equation

$$
i\frac{\partial}{\partial t}|X(t)\rangle = \mathcal{H}|X(t)\rangle = \left(M - i\frac{\Gamma}{2}\right)|M(t)\rangle \tag{3}
$$

 \blacktriangleright For neutral mesons, mixing leads to a coupled system

$$
i\frac{\partial}{\partial t}\begin{pmatrix} |B^0\rangle\\|\bar{B}^0\rangle\end{pmatrix} = \mathcal{H}\begin{pmatrix} |B^0\rangle\\|\bar{B}^0\rangle\end{pmatrix} = \left(\boldsymbol{M} - i\frac{\boldsymbol{\Gamma}}{2}\right)\begin{pmatrix} |B^0\rangle\\|\bar{B}^0\rangle\end{pmatrix}
$$
(4)

$$
= \begin{pmatrix} M_{11} - i\Gamma_{11}/2 & M_{12} - i\Gamma_{12}/2 \\ M_{12}^* - i\Gamma_{12}^*/2 & M_{22} - i\Gamma_{22}/2 \end{pmatrix} \begin{pmatrix} |B^0\rangle \\ |\overline{B}^0\rangle \end{pmatrix}
$$
 (5)

where

$$
M_{12} = \frac{1}{2M} \mathcal{A}(B^0 \to \overline{B}^0) = \langle \overline{B}^0 | \mathcal{H}(\Delta B = 2) | B^0 \rangle \tag{6}
$$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ)도 19 Q @

Coupled meson systems

- \triangleright To start with we will neglect CP-violation in mixing (approximately the case for all four neutral meson species)
- \triangleright Neglecting CP-violation, the physical states are an equal mixture of the flavour states

$$
|B_L^0\rangle=\frac{|B^0\rangle+|\overline{B}^0\rangle}{2},\hspace{0.5cm} |B_H^0\rangle=\frac{|B^0\rangle-|\overline{B}^0\rangle}{2}
$$

with mass and width differences

$$
\Delta\Gamma = \Gamma_H - \Gamma_L = 2|\Gamma_{12}|, \quad \Delta M = M_H - M_L = 2|M_{12}|
$$

so that the physical system evolves as

$$
i\frac{\partial}{\partial t}\begin{pmatrix} |B_{L}^{0}\rangle\\|B_{H}^{0}\rangle \end{pmatrix} = \mathcal{H}\begin{pmatrix} |B_{L}^{0}\rangle\\|B_{H}^{0}\rangle \end{pmatrix} = \left(M - i\frac{\Gamma}{2}\right)\begin{pmatrix} |B_{L}^{0}\rangle\\|B_{H}^{0}\rangle \end{pmatrix}
$$
(7)

$$
\begin{pmatrix} M_{L} - i\Gamma_{L}/2 & 0 \end{pmatrix} \begin{pmatrix} |B_{L}^{0}\rangle \end{pmatrix}
$$

$$
= \begin{pmatrix} M_L - i\Gamma_L/2 & 0 \\ 0 & M_H - i\Gamma_H/2 \end{pmatrix} \begin{pmatrix} |B_L^c\rangle \\ |B_H^0\rangle \end{pmatrix} \tag{8}
$$

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Time evolution

Solving the Schrödinger equation gives the time evolution of a pure state $|B^0\rangle$ or ▶ $|\bar{B}^0\rangle$ at time $t=0$

$$
|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle
$$

$$
|\overline{B}^{0}(t)\rangle = g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{q}g_{-}(t)|B^{0}\rangle
$$
 (9)

where

$$
g_{+}(t) = e^{-iMt}e^{-\Gamma t/2} \left[\cosh\left(\frac{\Delta\Gamma t}{4}\right)\cos\left(\frac{\Delta mt}{2}\right) - i\sinh\left(\frac{\Delta\Gamma t}{4}\right)\sin\left(\frac{\Delta mt}{2}\right) \right]
$$

$$
g_{-}(t) = e^{-iMt}e^{-\Gamma t/2} \left[-\sinh\left(\frac{\Delta\Gamma t}{4}\right)\cos\left(\frac{\Delta mt}{2}\right) + i\cosh\left(\frac{\Delta\Gamma t}{4}\right)\sin\left(\frac{\Delta mt}{2}\right) \right] \tag{10}
$$

and $M = (M_L + M_H)/2$ and $\Gamma = (\Gamma_L + \Gamma_H)/2$

▶ No CP-violation in mixing means that $|p/q|=1$ (and thus we have equal admixtures)

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Time evolution

 \triangleright Using Eq. (10) flavour remains unchanged (+) or will oscillate (-) with probability

$$
|g_{\pm}(t)|^2 = \frac{e^{-\Gamma t}}{2} \left[\cosh\left(\frac{\Delta \Gamma t}{2}\right) \pm \cos(\Delta mt) \right] \tag{11}
$$

 \triangleright With no CP violation in the mixing, the time-integrated mixing probability is

$$
\frac{\int |g_{-}(t)|^2 dt}{\int |g_{-}(t)|^2 dt + \int |g_{+}(t)|^2 dt} = \frac{x^2 + y^2}{2(x^2 + 1)}\tag{12}
$$

where

$$
x = \frac{\Delta m}{\Gamma} \quad \text{and} \quad y = \frac{\Delta \Gamma}{2\Gamma} \tag{13}
$$

The four different neutral meson species which mix have very different values of (x, y) and therefore very different looking time evolution properties

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ (ヨ)도 19 Q @

Neutral Meson Mixing

Rahul (TIFR) **[Unravelling the mysteries of CKM matrix](#page-0-0)** 17/27

Neutral Meson Mixing

Mass and width differences of the neutral meson mixing systems ь

Rahul (TIFR) **[Unravelling the mysteries of CKM matrix](#page-0-0)** 18/27

|星|≡ めんぴ

Measuring CP violation

- 1. Need at least two interfering amplitudes
- 2. Need two phase differences between them
	- ▶ One CP conserving ("strong") phase difference (δ)
	- ▶ One CP violating ("weak") phase difference (ϕ)
- If there is only a single path to a final state, f, then we cannot get direct CP violation
- If there is only one path we can write the amplitudes for decay as

$$
\mathcal{A}(B \to f) = A_1 e^{i(\delta_1 + \phi_1)}
$$

$$
\mathcal{A}(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \phi_1)}
$$

 \blacktriangleright Which gives an asymmetry of

$$
\mathcal{A}_{CP} = \frac{|\mathcal{A}(\overline{B} \to \overline{f})|^2 - |\mathcal{A}(B \to f)|^2}{|\mathcal{A}(\overline{B} \to \overline{f})|^2 + |\mathcal{A}(B \to f)|^2} = 0
$$
\n(17)

- In order to observe CP -violation we need a second amplitude.
- This is often realised by having interefering tree and penguin amplitudes

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Measuring CP violation

- \triangleright We measure quark couplings which have a complex phase
- \triangleright This is only visible when there are two amplitudes

Below we represent two amplitudes (red and blue) with the same magnitude $= 1$ ▶

- The strong phase difference is, $\delta = \pi/2$
- The weak phase difference is, $\phi = \pi/4$

Measuring (direct) CP violation

Introducing the second amplitude we now have

$$
A(B \to f) = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)} \tag{18}
$$

$$
\mathcal{A}(\bar{B}\to\bar{f}) = A_1 e^{i(\delta_1-\phi_1)} + A_2 e^{i(\delta_2-\phi_2)} \tag{19}
$$

 \triangleright Which gives an asymmetry of

$$
\mathcal{A}_{CP} = \frac{|\mathcal{A}(\overline{B} \to \overline{f})|^2 - |\mathcal{A}(B \to f)|^2}{|\mathcal{A}(\overline{B} \to \overline{f})|^2 + |\mathcal{A}(B \to f)|^2}
$$
(20)

$$
2A_1^2 + 2A_2^2 + 4A_1A_2\cos(\delta_1 - \delta_2)\cos(\phi_1 - \phi_2)
$$

=
$$
\frac{2r\sin(\delta)\sin(\phi)}{1 + r^2 + 2r\cos(\delta)\cos(\phi)}
$$
 (22)

where $r = A_1/A_2$, $\delta = \delta_1 - \delta_2$ and $\phi = \phi_1 - \phi_2$

This is only non-zero if the amplitudes have **different** weak and strong phases

- This is CP-violation in decay (often called "direct" CP violation). ▶
	- \triangleright This is the only possible route of CP violation for a charged initial state
	- \triangleright We will see now that for a neutral initial state there are other ways of realising CP violation

(ロ) (伊) (경) (경) (경) 경)= 990

Classification of CP violation

- First let's consider a generalised form of a neutral meson, X^0 , decaying to a final state, f
- There are four possible amplitudes to consider

$$
A_f = \langle f | X^0 \rangle
$$

\n
$$
A_{\bar{f}} = \langle \bar{f} | X^0 \rangle
$$

\n
$$
\bar{A}_{\bar{f}} = \langle \bar{f} | \bar{X}^0 \rangle
$$

\n
$$
\bar{A}_{\bar{f}} = \langle \bar{f} | \bar{X}^0 \rangle
$$

▶ Define a complex parameter, λ_f (not the Wolfenstein parameter, λ)

$$
\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f}, \quad \bar{\lambda}_f = \frac{1}{\lambda_f}, \quad \lambda_{\bar{f}} = \frac{q}{p} \frac{\bar{A}_{\bar{f}}}{A_{\bar{f}}}, \quad \bar{\lambda}_{\bar{f}} = \frac{1}{\lambda_{\bar{f}}}
$$

KED KARD KED KED EIE KOAA

[Neutral Meson Mixing](#page-45-0)

Classification of CP violation

Can realise CP violation in three ways:

- 1. CP violation in decay
	- \blacktriangleright For a charged initial state this is only the type possible

$$
\Gamma(X^0 \to f) \neq \Gamma(\bar{X}^0 \to \bar{f}) \Longrightarrow \left| \frac{\bar{A}_{\bar{f}}}{A_f} \right| \neq 1
$$
 (23)

2. CP violation in mixing

$$
\Gamma(X^0 \to \bar{X}^0) \neq \Gamma(\bar{X}^0 \to X^0) \Longrightarrow \left[\begin{array}{c} |p| \neq 1\\ \boxed{q} \end{array} \right]
$$
 (24)

3. CP violation in the interference between mixing and decay

$$
\Gamma(X^0 \to f) \neq \Gamma(X^0 \to \bar{X}^0 \to f) \Longrightarrow \arg(\lambda_f) = \left[\arg \left(\frac{q \bar{A}_f}{p \bar{A}_f} \right) \neq 0 \right] \tag{25}
$$

- \triangleright We just saw an example of CP violation in decay
- Example 13 Let's extend our formalism of neutral mixing, Eqs. $(9-13)$, to include CP violation

Neutral Meson Mixing with CP violatio

- Allowing for CP violation, $M_{12} \neq M_{12}^*$ and $\Gamma_{12} \neq \Gamma_{12}^*$
- The physical states can now be unequal mixtures of the weak states ▶

$$
|B_L^0\rangle = p|B^0\rangle + q|\overline{B}^0\rangle
$$

$$
|B_H^0\rangle = p|B^0\rangle - q|\overline{B}^0\rangle
$$
 (26)

where

$$
|p|^2 + |q|^2 = 1
$$

The states now have mass and width differences ▶

> $|\Delta\Gamma| \approx 2|\Gamma_{12}|\cos(\phi), \quad |\Delta M| \approx 2|M_{12}|, \quad \phi = \arg(-M_{12}/\Gamma_{12})$ (27)

- \triangleright We'll see some examples of this later
- ▶ Now to equip ourselves with the formalism for a generalised meson decay

K ロ > K 個 > K 로 > K 로 > (로)= 19 Q Q

Generalized Meson Decay Formalism

The probability that state X^0 at time t decays to f at time t

 \triangleright contains terms for CPV in decay, mixing and the interference between the two

$$
\Gamma_{X^{0}\to f}(t) = \frac{|A_{f}|^{2}}{|B_{f}|^{2}} \left(\frac{|g_{+}(t)|^{2}}{|g_{-}(t)|^{2}} + \frac{|\lambda_{f}|^{2}}{|g_{-}(t)|^{2}} + \frac{2\Re\left[\lambda_{f}g_{+}^{*}(t)g_{-}(t)\right]}{|\lambda_{f}|^{2}} \right) \tag{28}
$$
\n
$$
\Gamma_{X^{0}\to f}(t) = \frac{|\overline{A}_{f}|^{2}}{|B_{f}|^{2}} \left(\frac{|g_{-}(t)|^{2}}{|g_{-}(t)|^{2}} + \frac{|\lambda_{f}|^{2}}{|g_{+}(t)|^{2}} + \frac{2\Re\left[\lambda_{f}g_{+}(t)g_{-}^{*}(t)\right]}{|\lambda_{f}|^{2}} \right) \tag{29}
$$
\n
$$
\Gamma_{\overline{X}^{0}\to f}(t) = \frac{|\overline{A}_{f}|^{2}}{|B_{f}|^{2}} \left(\frac{|g_{-}(t)|^{2}}{|g_{-}(t)|^{2}} + \frac{|\lambda_{f}|^{2}}{|g_{-}(t)|^{2}} + \frac{2\Re\left[\lambda_{f}g_{+}(t)g_{-}^{*}(t)\right]}{|\lambda_{f}|^{2}} \right) \tag{30}
$$
\n
$$
\Gamma_{\overline{X}^{0}\to f}(t) = \frac{|\overline{A}_{f}|^{2}}{|B_{f}|^{2}} \left(\frac{|g_{+}(t)|^{2}}{|g_{-}(t)|^{2}} + \frac{|\lambda_{f}|^{2}}{|g_{-}(t)|^{2}} \right) + \frac{2\Re\left[\lambda_{f}g_{+}^{*}(t)g_{-}(t)\right]}{|\lambda_{f}|^{2}} \right) \tag{31}
$$

where the mixing probabilities are as before

$$
|g_{\pm}(t)|^2 = \frac{e^{-\Gamma t}}{2} \left[\cosh\left(\frac{\Delta \Gamma t}{2}\right) \pm \cos(\Delta mt) \right]
$$
 (32)

$$
g_{+}^{*}g_{-}^{(*)} = \frac{e^{-\Gamma t}}{2} \left[\sinh\left(\frac{\Delta\Gamma t}{2}\right) \pm i\sin(\Delta mt) \right]
$$
 (33)

K 분 ▶ - 분(팀 Y) Q ⊙

 \leftarrow $=$ \rightarrow

Generalized Meson Decay Formalism

From the above we get the "master equations" for neutral meson decay

$$
\Gamma_{X^0 \to f}(t) = |A_f|^2 \qquad (1 + |\lambda_f|^2) \frac{e^{-\Gamma t}}{2} \left[\cosh(\frac{1}{2}\Delta \Gamma t) + C_f \cos(\Delta mt) + D_f \sinh(\frac{1}{2}\Delta \Gamma t) - S_f \sin(\Delta mt) \right]
$$
(34)

$$
\Gamma_{\overline{X}^0 \to f}(t) = |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) \frac{e^{-\Gamma t}}{2} \left[\cosh(\frac{1}{2}\Delta \Gamma t) - C_f \cos(\Delta mt) + D_f \sinh(\frac{1}{2}\Delta \Gamma t) + S_f \sin(\Delta mt) \right]
$$
(35)

where

$$
C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \quad D_f = \frac{2\mathcal{R}e(\lambda_f)}{1 + |\lambda_f|^2}, \quad S_f = \frac{2\mathcal{I}m(\lambda_f)}{1 + |\lambda_f|^2}
$$
(36)

- ightharpoonup and equivalents for the CP conjugate final state \bar{f}
- The time-dependent CP asymmetry is (for non- CP -eigenstates there are two) ▶

$$
\mathcal{A}_{CP}(t) = \frac{\Gamma_{X^0 \to f}(t) - \Gamma_{\overline{X}^0 \to f}(t)}{\Gamma_{X^0 \to f}(t) + \Gamma_{\overline{X}^0 \to f}(t)} = \frac{2C_f \cos(\Delta mt) - 2S_f \sin(\Delta mt)}{2 \cosh(\frac{1}{2}\Delta \Gamma t) + 2D_f \sinh(\frac{1}{2}\Delta \Gamma t)}
$$
(37)

 290

Specific cases:

$$
\mathcal{A}_{CP}(t) = \frac{2\mathcal{C}_f \cos(\Delta mt) - 2\mathcal{S}_f \sin(\Delta mt)}{2\cosh(\frac{1}{2}\Delta \Gamma t) + 2\mathcal{D}_f \sinh(\frac{1}{2}\Delta \Gamma t)}
$$

• For
$$
B^0
$$
, $\Delta \Gamma$ is small $\Rightarrow A_{CP}(t) = 2C_f \cos(\Delta mt) - 2S_f \sin(\Delta mt)$

• For
$$
D^0
$$
, both $\Delta\Gamma$ and Δm are small \Rightarrow $\mathcal{A}_{CP}(t) = \frac{\mathcal{C}_f - \mathcal{S}_f \Delta mt}{1 + \frac{1}{2}\mathcal{D}_f \Delta\Gamma t}$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ (경)님 → 9,9,0~