
Lukas Heinrich March 3rd 2023

pyhf introduction
Belle-II pyhf workshop (🤯)

1

Introduction

Thanks a lot for the invitation & organization of this workshop!

Particularly thanks to Sally & Florian!

Goals
Measure the Standard Model Look for the Unknown

Goals
Measure the Standard Model Look for the Unknown

The language in which we communicate our science is statistics

The most important object in statistics is the description of the
measurement as a data generating process

experimental
data

The Key Ingredient

p(𝒟 |θ)
parameters

 
The statistical model is where the physics lives. 
Once we have it, we can do all kinds of statistics

p(x |θ)

The Key Ingredient

p(θ |𝒟) =
p(𝒟 |θ)p(θ)

p(𝒟)p(𝒟 |θ) → ̂θ, [θ−, θ+]

Frequentist Inference Bayesian Inference

interesting discussion, which to use, but remember physics content is the same (!) 
and defined by the common p(x |θ)

The core of HEP experiments is the collection of an  
 

Repeated Experiments

independent identically distributed

p(𝒟 |θ) = ∏
xi∈𝒟

p(xi |θ)

We can build the dataset-wide model from the 
per-event model

i.i.d. sample

The problem in HEP: we do not know the detector-level per-
event model in closed form, such that we could evaluate  
 
 

p(x |θ)

The bad news

p(zh |zp) p(zp |θ)p(x |zh)∫ dzp(x |θ) =

sum over all possible 
histories

But: we can sample from this model 
without any problems (MC simulation)

x ∼ p(x |θ)

θ
O(10)

O(100M)

Hypothesis

da
ta

 d
im

en
si

on
al

ity
RGE Flow

Matrix
Elements

PDFs

Parton
Shower

Hadronization

Material
Interaction

“Simulation”

With samples from a density we can construct an
empirical density estimate 
 
 
e.g. using a histogram as an approximation

x ∼ p(x |θ)

Empirical Density Estimate

{xi} → ̂p(x |θ)

Problem: We can’t fill a histogram in 100M dimensions

Most of what we call Reconstruction & Analysis is about good
low-dimensional observables, for which we can fill histograms

Summary Statistics

θ
O(10)

O(100M)

Hypothesis

da
ta

 d
im

en
si

on
al

ity

Detector Data

RGE Flow

Matrix
Elements

PDFs

Parton
Shower

Hadronization

Material
Interaction

t(x) → ̂θ
Inference

Statistical
Analysis

Observable
Distributions

Jet
Algorithms

Energy
Clusters

Tracks

"Analysis"“Simulation”

These observable densities are basis the subsequent analysis

How to build a statistical model using histograms 
is what HistFactory is all about

Summary Statistics

A powerful and flexible 
statistical modelling approach

HistFactory denotes a mathematical modelling approach for  
describing typical HEP situations

 
 

A bit of Nomenclature

Standard Model SUSY Belle-II Analyses

HistFactory was first implemented in ROOT / RooFit (2010)

 
 

for a while the only implementation

A bit of Nomenclature

pyhf is a newer implementation within the scientific python 
ecosystem of the HistFactory model (2018)

Based on the Scientific Python and ML ecosystems

A bit of Nomenclature

So let’s Model-Build
The HistFactory model starts from considering space of events.  
 
HEP typically cannot look at all events but a subset. Often a
handful of orthogonal “regions” or “channels”

Channel 
1

Channel 2

p(data |θ) = ∏
c

pc(data |θ)

For a single channel, we describe project events onto a single
summary statistic for which we estimate x → s(x) ̂p(s |θ)

Changes in expected data distribution 
as function of parameters translate accordingly

So let’s Model-Build

s(x) = const .

s(x)

p(s(x) |θ)p(x |θ)

projection 
x → s(x)

θ = θ0

So let’s Model-Build
Describing a 1-D observable in a HEP setting can be done by
describing each bin in the density as a Poisson measurement

s(x) s(x)

∏
b

Pois(nb |λb(θ))

So let’s Model-Build
In a given region of phase-space, typically a number of physics
processes (“samples”) contribute: we model the total as a sum.

∏
b

Pois(nb |λb = ∑
s

λsb(θ))

ZZ Sample

H signal

Z+jets

total expectedn observed

So let’s Model-Build
In a given region of phase-space, typically a number of physics
processes (“samples”) contribute: we model the total as a sum.

Channel 
1

Channel 2

∏
c∈channels

∏
b∈binsc

Pois(ncb |λb = ∑
s

λcsb(θ))

Caputing the Information
In order to build a model like this, we need to keep track of a
bunch of numbers.

How? A JSON File

Why? A ubiquitous format that is easy to share / validate.

(see later today topic of “likelihood preservation)

Caputing the Information
What we discussed so far would be captured with something
very simple like this: 2 Channels - 2 Samples

So let’s Model-Build

Remaining questions:

• How do we model effect of varying

• How do we incorporate prior information on

θ
θ

The distribution of depends on parameters - includes
core physics parameters and nuisance parameters

s(x) θ

So let’s Model-Build

s(x) = const .

s(x)

p(s(x) |θ)p(x |θ)

projection 
x → s(x)

θ = θ0

The distribution of depends on parameters - includes
core physics parameters and nuisance parameters

s(x) θ

So let’s Model-Build

s(x) = const .

s(x)

p(s(x) |θ)p(x |θ)

projection 
x → s(x)

θ = θ1

The distribution of depends on parameters - includes
core physics parameters and nuisance parameters

s(x) θ

So let’s Model-Build

s(x) = const .

s(x)

p(s(x) |θ)p(x |θ)

projection 
x → s(x)

θ = θ−1

Estimating the low-D distribution with samples from high-D is
very expensive. Need a fast way to approximate this.

So let’s Model-Build

Parametrization in Histogram space

?
θ0

θ1

θ−1

?

So let’s Model-Build
HistFactory provides a few standard building blocks in order to
model the effect of parameters to the distribution

“Modifiers”

Correlated Scaling

Correlated Shape

Uncorrelated Shape

Uncorrelated ScalingLuminosity
MC Stats Variation

Normalization
histosys

normfactor

shapefactor

shapesys

staterror

normfactor

lumi

Simplest modifier is a scaling λcsb(θ) = θλ0
csb

Example Normfactor

2x

To capture how each is a function of various parameters,
 we can add a number of such modifiers in JSON

λcsb
λcsb = λcsb(θ)

Example Normfactor

modifier data. 
here: scale only sample 2

evaluate for different parameter values

Histosys builds a parametrization of histograms, based on three
input histograms (“nominal”, “up”, “down”) 
 

Example HistoSys

?
λ(α = 0) = λnom

λ(α = 1) = λup

λ(α = 1) = λdn

Example HistoSys

Normsys parametrizes a histogram to model a normalization
uncertainty (“my background is X ± Y”) 

Example NormSys

λ(α = 0) = λnom

λ(α = 1) = kupλnom

λ(α = 1) = kdnλnom

So let’s Model-Build
You can find a detailed description of all available modifiers and
what they do in the pyhf documentation

With our toolbox we can quickly compose different modifiers to

build up complex

We could already start fitting those

But we can do more: add prior information

Adding prior Information

p(data |θ) = ∏
c∈channels

∏
b∈binsc

Pois(ncb |λb = ∑
s

λcsb(θ))

Just parametrizing is not enough, often we want to give
additional information about possible parameter values

Example:  
 
When I say: the background is 50 ± 10 events, I ofen mean it as a
type of statistical interval

• most prefered given what I know

• possible

• disfavored

b = 50
b = 40,60
b = 10,80

Adding prior Information

How do we express this in our model

There is a myth that only Bayesian procedures allow you to add
such prior information - it’s not true, as we will see.

But it’s true: in Bayesian it’s very simple

Bayesian vs Frequentist

p(θ |𝒟) =
p(𝒟 |θ)p(θ)

p(𝒟)

Prior Beliefs over parameter values

Our Experiment

p(data |θ) = ∏
c∈channels

∏
b∈binsc

Pois(ncb |λb = ∑
s

λcsb(θ))

But where does our prior belief come from? Most likely from a
prior measurement! 
 
 
 
 
Plugging this in gives us:

Bayesian vs Frequentist

p(θ) = p(θ |dataaux) =
p(dataaux |θ)pur(θ)

p(dataaux)

p(θ |data) =
p(data |θ)

p(data)
p(dataaux |θ)

p(dataaux)
pur(θ)

But where does our prior belief come from? Most likely from a
prior measurement!

Bayesian vs Frequentist

p(θ) = p(θ |dataaux) =
p(dataaux |θ)pur(θ)

p(dataaux)

p(θ |data) =
p(data |θ)

p(data)
p(dataaux |θ)

p(dataaux)
pur(θ)

belief before any 
 measurement was donebelief of what we knew 

before our measurement
full information 

after all measurements

This short Bayesian treatment gives us a hint how to add prior
information also in the Frequentist case:

If our prior information is driven by a prior indepdentnt
measurement, we can just use a statistical combination to  
incorporate it

Bayesian vs Frequentist

p(θ |data) =
p(data |θ)

p(data)
p(dataaux |θ)

p(dataaux)
pur(θ)

p(data |θ) → p(data |θ)p(dataaux |θ)

Let’s go back to: “my background is X ± Y”

• interpret: there is a prior measurement of data such that

 would be favored (in some units)α̂ = 0 ± 1

Example Aux Measurement

λ(α = 0) = λnom

λ(α = 1) = kupλnom

λ(α = 1) = kdnλnom

negative log likelihood

-1 +10 α

Our interpretation what the  
fit of the prior measurement looked like

The solution HistFactory uses is to add “proxy models” that
would produce a similar likelihood for the combination

p(dataaux |α) ≈ Norm(a |α, σ = 1)

Solution

negative log likelihood

-1 +10 α

a = 0

proxy model

real prior 
measurement

Some HistFactory modifiers that are associated with
“systematic uncertainties” - will automatically add such a term

Modifiers

Correlated Scaling

Correlated Shape

Uncorrelated Shape

Uncorrelated ScalingLuminosity
MC Stats Variation

Normalization
histosys

normfactor

shapefactor

shapesys

staterror

normfactor

lumi

implies a auxiliary (prior) measurement no aux. measurement

Some HistFactory modifiers that are associated with
“systematic uncertainties” - will automatically add such a term

The full HistFactory Model

∏
c∈channels

∏
b∈binsc

Pois(ncb |λb = ∑
s

λcsb(θ)) ∏
a∈A

p(auxa |α)

p(data, dataaux |θ) = p(data |θ) p(dataaux |θ)
Main Measurement Constraint Terms / Auxiliary Measurent

The full HistFactory Model

The full HistFactory Model
We can actually see the auxiliary data in action:

Evaluating the PDF
Take this example: what is the value of the likelihood at  

 if we observe N = [102,48] ?
θ = (μ = 0,α = 1)

Pois([102,48] |λ(0,1)) = Pois([102,48] |λ(0,1))
= Pois([102,48] | [110,55])

Norm(0 |α = 1)

Evaluating the PDF
Take this example: what is the value of the likelihood at  

 if we observe N = [102,48] ?
θ = (μ = 0,α = 1)

Pois([102,48] |λ(0,1)) = Pois([102,48] |λ(0,1))
= Pois([102,48] | [110,55])

Norm(0 |α = 1)

Evaluating the PDF

Upshot: HistFactory is not magic, it’s just a useful toolbox to
help you model your measurement

pyhf: implementation of HistFactory in python 
 
(interpolation algorithms, bookkeeping of constraint terms, …)

Beyond just the Model
Beyond the model building, pyhf also comes with “batteries
included” for some basic things
• Fitting / Limit Setting, Basic Plotting

But for more advanced use, best to use a library around pyhf 
e.g. cabinetry (next talk)

•

Next Steps in pyhf
The core HistFactory model has been stable for >10 years

• we know a huge amount of physics can be modelled with it

But some use-cases need to go beyond (see Lorenz’ talk)

• working on making this easy to to

• custom modifiers (possibly ML-based interpolation)

 
pyhf is just the model - no reason to be frequentist only

• working on fully consistent Bayesian APIs

p(x |θ)

Resources
https://pyhf.github.io/pyhf-tutorial/introduction.html

https://pyhf.github.io/pyhf-tutorial/introduction.html

