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Introduction

Thanks a lot for the invitation & organization of this workshop!


Particularly thanks to Sally & Florian! 







Goals
Measure the Standard Model Look for the Unknown



Goals
Measure the Standard Model Look for the Unknown

The language in which we communicate our science is statistics



The most important object in statistics is the description of the 
measurement as a data generating process


experimental 
data

The Key Ingredient

p(𝒟 |θ)
parameters



 
The statistical model  is where the physics lives. 
Once we have it, we can do all kinds of statistics

p(x |θ)

The Key Ingredient

p(θ |𝒟) =
p(𝒟 |θ)p(θ)

p(𝒟)p(𝒟 |θ) → ̂θ, [θ−, θ+]

Frequentist Inference Bayesian Inference

interesting discussion, which to use, but remember physics content is the same (!) 
and defined by the common p(x |θ)



The core of HEP experiments is the collection of an  
 

Repeated Experiments

independent identically distributed

p(𝒟 |θ) = ∏
xi∈𝒟

p(xi |θ)

We can build the dataset-wide model from the 
per-event model

i.i.d. sample



The problem in HEP: we do not know the detector-level per-
event model in closed form, such that we could evaluate  
 
 

p(x |θ)

The bad news

p(zh |zp) p(zp |θ)p(x |zh)∫ dzp(x |θ) =

sum over all possible 
histories

But: we can sample from this model 
without any problems (MC simulation)

x ∼ p(x |θ)

θ
O(10)

O(100M)
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With samples from a density  we can construct an 
empirical density estimate 
 
 
e.g. using a histogram as an approximation

x ∼ p(x |θ)

Empirical Density Estimate

{xi} → ̂p(x |θ)

Problem: We can’t fill a histogram in 100M dimensions



Most of what we call Reconstruction & Analysis is about good 
low-dimensional observables, for which we can fill histograms

Summary Statistics

θ
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t(x) → ̂θ
Inference

Statistical 
Analysis

Observable 
Distributions

Jet 
Algorithms

Energy 
Clusters

Tracks

"Analysis"“Simulation”

These observable densities are basis the subsequent analysis



How to build a statistical model using histograms 
is what HistFactory is all about

Summary Statistics

A powerful and flexible 
statistical modelling approach



HistFactory denotes a mathematical modelling approach for  
describing typical HEP situations


 
 

A bit of Nomenclature

Standard Model SUSY Belle-II Analyses



HistFactory was first implemented in ROOT / RooFit (2010)


 
 

for a while the only implementation

A bit of Nomenclature



pyhf is a newer implementation within the scientific python 
ecosystem of the HistFactory model (2018)


Based on the Scientific Python and ML ecosystems

A bit of Nomenclature



So let’s Model-Build
The HistFactory model starts from considering space of events.  
 
HEP typically cannot look at all events but a subset.  Often a 
handful of orthogonal “regions” or “channels” 

Channel 
1

Channel 2

p(data |θ) = ∏
c

pc(data |θ)



For a single channel, we describe project events onto a single 
summary statistic  for which we estimate x → s(x) ̂p(s |θ)

Changes in expected data distribution 
as function of parameters translate accordingly

So let’s Model-Build

s(x) = const .

s(x)

p(s(x) |θ)p(x |θ)

projection 
x → s(x)

θ = θ0



So let’s Model-Build
Describing a 1-D observable in a HEP setting can be done by 
describing each bin in the density as a Poisson measurement

s(x) s(x)

∏
b

Pois(nb |λb(θ))



So let’s Model-Build
In a given region of phase-space, typically a number of physics 
processes (“samples”) contribute: we model the total as a sum. 

∏
b

Pois(nb |λb = ∑
s

λsb(θ))

ZZ Sample

H signal

Z+jets

total expectedn observed



So let’s Model-Build
In a given region of phase-space, typically a number of physics 
processes (“samples”) contribute: we model the total as a sum. 

Channel 
1

Channel 2

∏
c∈channels

∏
b∈binsc

Pois(ncb |λb = ∑
s

λcsb(θ))



Caputing the Information
In order to build a model like this, we need to keep track of a 
bunch of numbers. 


How? A JSON File


Why? A ubiquitous format that is easy to share / validate.


(see later today topic of “likelihood preservation)



Caputing the Information
What we discussed so far would be captured with something 
very simple like this: 2 Channels - 2 Samples 



So let’s Model-Build

Remaining questions:


• How do we model effect of varying 

• How do we incorporate prior information on  

θ
θ



The distribution of  depends on parameters  - includes 
core physics parameters and nuisance parameters

s(x) θ

So let’s Model-Build

s(x) = const .

s(x)

p(s(x) |θ)p(x |θ)

projection 
x → s(x)

θ = θ0



The distribution of  depends on parameters  - includes 
core physics parameters and nuisance parameters

s(x) θ

So let’s Model-Build

s(x) = const .

s(x)

p(s(x) |θ)p(x |θ)

projection 
x → s(x)

θ = θ1



The distribution of  depends on parameters  - includes 
core physics parameters and nuisance parameters

s(x) θ

So let’s Model-Build

s(x) = const .

s(x)

p(s(x) |θ)p(x |θ)

projection 
x → s(x)

θ = θ−1



Estimating the low-D distribution with samples from high-D is 
very expensive. Need a fast way to approximate this.


So let’s Model-Build

Parametrization in Histogram space

?
θ0

θ1

θ−1

?



So let’s Model-Build
HistFactory provides a few standard building blocks in order to 
model the effect of parameters to the distribution


“Modifiers”

Correlated Scaling

Correlated Shape

Uncorrelated Shape

Uncorrelated ScalingLuminosity
MC Stats Variation

Normalization
histosys

normfactor

shapefactor

shapesys

staterror

normfactor

lumi



Simplest modifier is a scaling λcsb(θ) = θλ0
csb

Example Normfactor

2x



To capture how each  is a function of various parameters,  
 we can add a number of such modifiers in JSON

λcsb
λcsb = λcsb(θ)

Example Normfactor

modifier data. 
here: scale only sample 2

evaluate for different parameter values



Histosys builds a parametrization of histograms, based on three 
input histograms (“nominal”, “up”, “down”) 
 

Example HistoSys

?
λ(α = 0) = λnom

λ(α = 1) = λup

λ(α = 1) = λdn



Example HistoSys



Normsys parametrizes a histogram to model a normalization 
uncertainty (“my background is X ± Y”) 

Example NormSys

λ(α = 0) = λnom

λ(α = 1) = kupλnom

λ(α = 1) = kdnλnom



So let’s Model-Build
You can find a detailed description of all available modifiers and 
what they do in the pyhf documentation




With our toolbox we can quickly compose different modifiers to 

build up complex


We could already start fitting those


But we can do more: add prior information

Adding prior Information

p(data |θ) = ∏
c∈channels

∏
b∈binsc

Pois(ncb |λb = ∑
s

λcsb(θ))



Just parametrizing is not enough, often we want to give 
additional information about possible parameter values 

Example:  
 
When I say: the background is 50 ± 10 events, I ofen mean it as a 
type of statistical interval

•  most prefered given what I know

•  possible 

•  disfavored 

b = 50
b = 40,60
b = 10,80

Adding prior Information

How do we express this in our model



There is a myth that only Bayesian procedures allow you to add 
such prior information - it’s not true, as we will see.

But it’s true: in Bayesian it’s very simple

Bayesian vs Frequentist

p(θ |𝒟) =
p(𝒟 |θ)p(θ)

p(𝒟)

Prior Beliefs over parameter values

Our Experiment

p(data |θ) = ∏
c∈channels

∏
b∈binsc

Pois(ncb |λb = ∑
s

λcsb(θ))



But where does our prior belief come from? Most likely from a 
prior measurement! 
 
 
 
 
Plugging this in gives us:

Bayesian vs Frequentist

p(θ) = p(θ |dataaux) =
p(dataaux |θ)pur(θ)

p(dataaux)

p(θ |data) =
p(data |θ)

p(data)
p(dataaux |θ)

p(dataaux)
pur(θ)



But where does our prior belief come from? Most likely from a 
prior measurement!

Bayesian vs Frequentist

p(θ) = p(θ |dataaux) =
p(dataaux |θ)pur(θ)

p(dataaux)

p(θ |data) =
p(data |θ)

p(data)
p(dataaux |θ)

p(dataaux)
pur(θ)

belief before any 
 measurement was donebelief of what we knew 

before our measurement
full information 

after all measurements



This short Bayesian treatment gives us a hint how to add prior 
information also in the Frequentist case:


If our prior information is driven by a prior indepdentnt 
measurement, we can just use a statistical combination to  
incorporate it


Bayesian vs Frequentist

p(θ |data) =
p(data |θ)

p(data)
p(dataaux |θ)

p(dataaux)
pur(θ)

p(data |θ) → p(data |θ)p(dataaux |θ)



Let’s go back to: “my background is X ± Y”

• interpret: there is a prior measurement of data such that 

 would be favored (in some units)α̂ = 0 ± 1

Example Aux Measurement

λ(α = 0) = λnom

λ(α = 1) = kupλnom

λ(α = 1) = kdnλnom

negative log likelihood

-1 +10 α

Our interpretation what the  
fit of the prior measurement looked like



The solution HistFactory uses is to add “proxy models” that 
would produce a similar likelihood for the combination

p(dataaux |α) ≈ Norm(a |α, σ = 1)

Solution

negative log likelihood

-1 +10 α

a = 0

proxy model

real prior 
measurement



Some HistFactory modifiers that are associated with 
“systematic uncertainties” - will automatically add such a term

Modifiers

Correlated Scaling

Correlated Shape

Uncorrelated Shape

Uncorrelated ScalingLuminosity
MC Stats Variation

Normalization
histosys

normfactor

shapefactor

shapesys

staterror

normfactor

lumi

implies a auxiliary (prior) measurement no aux. measurement



Some HistFactory modifiers that are associated with 
“systematic uncertainties” - will automatically add such a term

The full HistFactory Model

∏
c∈channels

∏
b∈binsc

Pois(ncb |λb = ∑
s

λcsb(θ)) ∏
a∈A

p(auxa |α)

p(data, dataaux |θ) = p(data |θ) p(dataaux |θ)
Main Measurement Constraint Terms / Auxiliary Measurent



The full HistFactory Model



The full HistFactory Model
We can actually see the auxiliary data in action:




Evaluating the PDF
Take this example: what is the value of the likelihood at  

 if we observe N = [102,48] ? 
θ = (μ = 0,α = 1)

Pois([102,48] |λ(0,1)) = Pois([102,48] |λ(0,1))
= Pois([102,48] | [110,55])

Norm(0 |α = 1)



Evaluating the PDF
Take this example: what is the value of the likelihood at  

 if we observe N = [102,48] ? 
θ = (μ = 0,α = 1)

Pois([102,48] |λ(0,1)) = Pois([102,48] |λ(0,1))
= Pois([102,48] | [110,55])

Norm(0 |α = 1)



Evaluating the PDF

Upshot: HistFactory is not magic, it’s just a useful toolbox to 
help you model your measurement 

pyhf: implementation of HistFactory in python 
 
(interpolation algorithms, bookkeeping of constraint terms, …) 



Beyond just the Model
Beyond the model building, pyhf also comes with “batteries 
included” for some basic things  
• Fitting / Limit Setting, Basic Plotting

But for more advanced use, best to use a library around pyhf 
e.g. cabinetry (next talk) 

•



Next Steps in pyhf
The core HistFactory model has been stable for >10 years

• we know a huge amount of physics can be modelled with it


But some use-cases need to go beyond (see Lorenz’ talk) 

• working on making this easy to to

• custom modifiers (possibly ML-based interpolation)

 
pyhf is just the model  - no reason to be frequentist only

• working on fully consistent Bayesian APIs


p(x |θ)



Resources
https://pyhf.github.io/pyhf-tutorial/introduction.html 

https://pyhf.github.io/pyhf-tutorial/introduction.html

