# pyhf introduction Belle-II pyhf workshop ()

Lukas Heinrich March 3rd 2023

Technische Universität München



## Introduction

### Thanks a lot for the invitation & organization of this workshop!

### Particularly thanks to Sally & Florian!



## CERN

### LHC [Large Hadron Collider]









## Mt. Tsukuba

BELLEII

7.5 km

### Measure the Standard Model



## Goals

### Look for the Unknown

### Measure the Standard Model



### The language in which we communicate our science is statistics

## Goals

### Look for the Unknown



# The Key Ingredient

### The most important object in statistics is the description of the measurement as a data generating process

parameters  $p(\mathcal{D}|\theta)$ experimental data

# The Key Ingredient

### The statistical model $p(x | \theta)$ is where the physics lives. Once we have it, we can do all kinds of statistics

### $p(\mathcal{D} | \theta) \rightarrow \hat{\theta}, \ [\theta_{-}, \theta_{+}]$

**Frequentist Inference** 

interesting discussion, which to use, but remember physics content is the same (!) and defined by the **common**  $p(x \mid \theta)$ 

## **Bayesian Inference**

 $p(\theta | \mathcal{D}) = \frac{p(\mathcal{D} | \theta)p(\theta)}{p(\mathcal{D})}$ 



# **Repeated Experiments**

### The core of HEP experiments is the collection of an



We can build the dataset-wide model from the per-event model

### i.i.d. sample

identically distributed



# The bad news

### The problem in HEP: we do not know the detector-level perevent model in closed form, such that we could evaluate $p(x | \theta)$



"Simulation"

sum over all possible histories

# $p(x \mid \theta) = \int dz \ p(x \mid z_h) \ p(z_h \mid z_p) \ p(z_p \mid \theta)$

But: we can sample from this model without any problems (MC simulation)

 $x \sim p(x \mid \theta)$ 



# **Empirical Density Estimate**

empirical density estimate

e.g. using a histogram as an approximation



### With samples from a density $x \sim p(x \mid \theta)$ we can construct an

## $\{x_i\} \rightarrow \hat{p}(x \mid \theta)$



### **Problem:** We can't fill a histogram in 100M dimensions

## **Summary Statistics**

### Most of what we call Reconstruction & Analysis is about good low-dimensional observables, for which we can fill histograms



# **Summary Statistics**

# How to build a statistical model using histograms is what **HistFactory** is all about



# A powerful and flexible statistical modelling approach

# A bit of Nomenclature

# **HistFactory** denotes a mathematical modelling approach for describing typical HEP situations



**Standard Model** 

SUSY





**Belle-II Analyses** 

# A bit of Nomenclature HistFactory was first implemented in ROOT / RooFit (2010)



### for a while the only implementation

HistFactory: A tool for creating statistical models for use with RooFit and RooStats

Kyle Cranmer, George Lewis, Lorenzo Moneta, Akira Shibata, Wouter Verkerke

June 20, 2012

### Contents

| 1        | Tert              | aduation                                                                           | •  |  |  |  |  |  |  |
|----------|-------------------|------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| T        | Intr              | -oduction                                                                          | 2  |  |  |  |  |  |  |
|          | 1.1               | Preliminaries                                                                      | 2  |  |  |  |  |  |  |
|          | 1.2               | Generalizations and Use-Cases                                                      | 3  |  |  |  |  |  |  |
| <b>2</b> | The               | he Likelihood Template                                                             |    |  |  |  |  |  |  |
|          | 2.1               | Index Convention                                                                   | 4  |  |  |  |  |  |  |
|          | 2.2               | The Template                                                                       | 4  |  |  |  |  |  |  |
|          |                   | 2.2.1 Incorporating Monte Carlo statistical uncertainty on the histogram templates | 5  |  |  |  |  |  |  |
| 3        | Using HistFactory |                                                                                    |    |  |  |  |  |  |  |
|          | 3.1               | The HistFactory XML                                                                | 7  |  |  |  |  |  |  |
|          | 3.2               | Normalization Conventions                                                          | 8  |  |  |  |  |  |  |
|          | 3.3               | Usage of the HistFactory                                                           | 10 |  |  |  |  |  |  |
|          | 3.4               | Usage with RooStats tools                                                          | 10 |  |  |  |  |  |  |
| 4        | Inte              | erpolation & Constraints                                                           | 12 |  |  |  |  |  |  |
|          | 4.1               | Interpolation Options                                                              | 13 |  |  |  |  |  |  |
|          |                   | 4.1.1 Defaults in ROOT 5.32                                                        | 15 |  |  |  |  |  |  |
|          | 4.2               | Constraint Terms (+ global observables and nuisance parameter priors) $\ldots$     | 16 |  |  |  |  |  |  |
|          |                   | 4.2.1 Consistent Bayesian and Frequentist modeling                                 | 16 |  |  |  |  |  |  |
|          |                   | 4.2.2 Options for Constraint Terms                                                 | 17 |  |  |  |  |  |  |
| <b>5</b> | Exa               | mples                                                                              | 22 |  |  |  |  |  |  |
|          | 5.1               | A Simple Example                                                                   | 22 |  |  |  |  |  |  |
|          | 5.2               | ABCD                                                                               | 23 |  |  |  |  |  |  |
| 6        | $\mathbf{The}$    | e HistFactory XML Schema in DTD Format                                             | 25 |  |  |  |  |  |  |
| 7        | Manual entries    |                                                                                    |    |  |  |  |  |  |  |



# A bit of Nomenclature

### **pyhf** is a newer implementation within the scientific python ecosystem of the HistFactory model (2018)

Based on the Scientific Python and ML ecosystems











The HistFactory model starts from considering space of events.

### HEP typically cannot look at all events but a subset. Often a handful of orthogonal "regions" or "channels"





# For a single channel, we describe project events onto a single summary statistic $x \rightarrow s(x)$ for which we estimate $\hat{p}(s \mid \theta)$



projection  $x \rightarrow s(x)$ 

 $p(x \mid \theta)$  Changes in expected data distribution as function of parameters translate accordingly



# Describing a 1-D observable in a HEP setting can be done by describing each bin in the density as a Poisson measurement



# $\int_{b} \text{Pois}(n_b \mid \lambda_b(\theta))$

s(x)





In a given region of phase-space, typically a number of physics processes ("samples") contribute: we model the total as a sum.





# $c \in \text{channels } b \in \text{bins}_{c}$

In a given region of phase-space, typically a number of physics processes ("samples") contribute: we model the total as a sum.



# Caputing the Information

In order to build a model like this, we need to keep track of a bunch of numbers.

### How? A JSON File

Why? A ubiquitous format that is easy to share / validate.

(see later today topic of "likelihood preservation)

# Caputing the Information

# What we discussed so far would be captured with something very simple like this: **2 Channels - 2 Samples**

```
spec = {
    'channels': [
        ٦
            'name': 'channel1',
            'samples': [
                {'name': 'sample1', 'data': [50,60,70]},
                {'name': 'sample2', 'data': [10,5,2]}
        },
            'name': 'channel2',
            'samples': [
                {'name': 'sample1', 'data': [150,160,170]},
                {'name': 'sample2', 'data': [20,10,4]}
```

Remaining questions:

- How do we model effect of varying  $\boldsymbol{\theta}$
- How do we incorporate prior information on  $\theta$

varying  $\theta$ or information on  $\theta$ 

# The distribution of s(x) depends on parameters $\theta$ - includes core physics parameters and nuisance parameters



projection  $x \rightarrow s(x)$ 

 $p(x \mid \theta)$ 



# The distribution of s(x) depends on parameters $\theta$ - includes core physics parameters and nuisance parameters



projection  $x \rightarrow s(x)$ 





# The distribution of s(x) depends on parameters $\theta$ - includes core physics parameters and nuisance parameters



projection  $x \rightarrow s(x)$ 





# very expensive. Need a fast way to approximate this.



- Estimating the low-D distribution with samples from high-D is
  - **Parametrization in Histogram space**

# HistFactory provides a few standard building blocks in order to model the effect of parameters to the distribution



### "Modifiers"

Normalization

normfactor

**Correlated Scaling** 

normfactor

**Uncorrelated Scaling** 

shapefactor

Luminosity

lumi



## Simplest modifier is a scaling $\lambda_{csb}(\theta) = \theta \lambda_{csb}^0$



## **Example Normfactor**

**2**x



### To capture how each $\lambda_{csh}$ is a function of various parameters, $\lambda_{csh} = \lambda_{csh}(\theta)$ we can add a number of such modifiers in JSON

```
spec = {
    'channels': [
            'name': 'channel1',
            'samples': [
                {'name': 'sample1', 'data': [50,60,70], 'modifiers': []},
                {'name': 'sample2', 'data': [10,5,2], 'modifiers': [
                    {'type': 'normfactor', 'name': 'mu', 'data': None}
                ]}
        },
            'name': 'channel2',
            'samples': [
                {'name': 'sample1', 'data': [150,160,170], 'modifiers': []},
                {'name': 'sample2', 'data': [20,10,4], 'modifiers': [
                    {'type': 'normfactor', 'name': 'mu', 'data': None}
                ]}
```

# **Example Normfactor**









### Histosys builds a parametrization of histograms, based on three input histograms ("nominal", "up", "down")



# **Example HistoSys**

 $\lambda(\alpha = 0) = \lambda^{\text{nom}}$ 

 $\lambda(\alpha = 1) = \lambda^{dn}$ 





## **Example HistoSys**

```
spec = {
    'channels': [
             'name': 'channel1',
             'samples': [
                 {'name': 'sample1', 'data': [50,60,70],
                   'modifiers':
                     {'type': 'histosys', 'name': 'mu', 'data': {
                          'hi_data': [55, 65,75],
                          'lo_data': [45, 50,30]
                     }}
                                                          model = pyhf.Model(spec)
                                                          model.expected_actualdata([0.0])
                 ]},
                                                          array([50., 60., 70.])
                                                          model.expected_actualdata([1.0])
                                                          array([55., 65., 75.])
```

model.expected\_actualdata([-1.0])

```
array([45., 50., 30.])
```

# **Example NormSys**

# Normsys parametrizes a histogram to model a normalization uncertainty ("my background is $X \pm Y$ ")

spec = {

 $\lambda(\alpha = 1) = k_{up}\lambda^{nom}$  $\lambda(\alpha = 0) = \lambda^{nom}$  $\lambda(\alpha = 1) = k_{dn}\lambda^{nom}$ 

```
'channels': [
       'name': 'channel1',
       'samples': [
          {'name': 'sample1', 'data': [50,60,70],
           'modifiers': [
              {'type': 'normsys', 'name': 'mu', 'data': { 'hi': 1.1, 'lo': 0.8 }}
          ]},
                          model = pyhf.Model(spec)
                          model.expected_actualdata([0.0])
                          array([50., 60., 70.])
                          model.expected_actualdata([1.0])
                          array([55., 66., 77.])
                          model.expected_actualdata([-1.0])
                          array([40., 48., 56.])
```



# You can find a detailed description of all available modifiers and what they do in the pyhf documentation

| •••                                         |                                                            |
|---------------------------------------------|------------------------------------------------------------|
| <b>脅 pyhf</b><br>∨0.7.0                     | <ul> <li>the samples no</li> <li>the absolute u</li> </ul> |
| Search docs                                 | nuisance parameters                                        |
| Introduction                                | These values are, in the                                   |
| Likelihood Specification                    | needs to go back and                                       |
| Workspace<br>Channel<br>Sample              | The previous example v<br>allocate three nuisance          |
| Modifiers                                   |                                                            |
| Uncorrelated Shape (shapesys)               | <pre>{ "name": "mod_name";</pre>                           |
| Correlated Shape (histosys)                 |                                                            |
| Normalisation Uncertainty (normsys)         | Correlated Shape                                           |
| MC Statistical Uncertainty (staterror)      |                                                            |
| Luminosity (lumi)                           | shapes, hence a correla                                    |
| Unconstrained Normalisation<br>(normfactor) | distributions with a "do                                   |
| Data-driven Shape (shapefactor)             | absolute shape variatio                                    |
| Data                                        | · · · · ·                                                  |
| Measurements                                | { "name": "mod_name";                                      |
| Observations                                |                                                            |
| Toy Example                                 | This example specifies                                     |
| Additional Material                         | in first bin, 15 events ir                                 |
| Fundamentals                                | second bin). This variat                                   |
| Examples                                    | Normalization                                              |
| Outreach                                    | Normalisation U                                            |
| Installation                                | The normalisation unce                                     |
| Developing                                  | between downward ("lo                                      |
|                                             |                                                            |

v: v0.7.0 🗸

Display a menu

pyhf.readthedocs.io
 i pyhf.readthedocs.io
 i pyhf.readthedocs.io
 i pyhf.readthedocs.io
 i i pyhf.readthedocs.io

will allocate three nuisance parameters for <a>mod\_name</a>. The following example will also e parameters for a 3-bin channel, with the second nuisance parameter fixed to <a>1</a>:

"type": "shapesys", "data": [1.0, 0.0, 2.0] }

### (histosys)

ts the same source of uncertainty which has a different effect on the various sample ated shape. To implement an interpolation between sample distribution shapes, the ownward variation" ("lo") associated with  $\alpha = -1$  and an "upward variation" ("hi") -1 are provided as arrays of floats. An example of a correlated shape modifier with ons for a 2-bin channel is shown below:

"type": "histosys", "data": {"hi\_data": [20,15], "lo\_data": [10, 10]} }

the expected event rate for the high-variation of the histosys as [20, 15] (20 events in second bin); for the low-variation as [10, 10] (10 events in first bin, 10 events in fion is absolute (not relative!).

### ncertainty (normsys)

The normalisation uncertainty modifies the sample rate by a overall factor  $\kappa(\alpha)$  constructed as the interpolation between downward ("lo") and upward ("hi") as well as the nominal setting, i.e.  $\kappa(-1) = \kappa_{\alpha=-1}$ ,  $\kappa(0) = 1$  and  $\kappa(+1) = \kappa_{\alpha=+1}$ . In the modifier definition we record  $\kappa_{\alpha=+1}$  and  $\kappa_{\alpha=-1}$  as floats. An example of a normalisation uncertainty modifier with scale factors recorded for the up/down variations of an *n*-bin channel is

# Adding prior Information

With our toolbox we can quickly compose different modifiers to build up complex

# $c \in \text{channels } b \in \text{bins}_{c}$

We could already start fitting those

But we can do more: add prior information

 $p(\text{data} | \theta) = \sum \lambda_{csb}(\theta)$ S

# Adding prior Information

### Just parametrizing is not enough, often we want to give additional information about possible parameter values

### **Example:**

When I say: the background is  $50 \pm 10$  events, I ofen mean it as a type of statistical interval

- b = 50 most prefered given what I know
- b = 40,60 possible
- b = 10,80 disfavored

How do we express this in our model

# such prior information - it's not true, as we will see. But it's true: in Bayesian it's very simple

**Our Experiment** 

$$p(\text{data} | \theta) = \prod_{c \in \text{channels}} \prod_{b \in \text{bins}_{c}} \text{Pois}(n_{cb} | \lambda_b = \sum_{s} \lambda_{csb}(\theta))$$

$$p(\theta \mid \mathscr{D})$$

- There is a myth that only Bayesian procedures allow you to add



Prior Beliefs over parameter values

# But where does our prior belief come from? Most likely from a prior measurement!

 $p(\theta) = p(\theta | \text{data}_{a})$ 

Plugging this in gives us:

$$p_{\text{uux}} = \frac{p(\text{data}_{\text{aux}} | \theta) p_{\text{ur}}(\theta)}{p(\text{data}_{\text{aux}})}$$

$$p(\theta | \text{data}) = \frac{p(\text{data} | \theta)}{p(\text{data})} \frac{p(\text{data}_{\text{aux}} | \theta)}{p(\text{data})} p_{\text{ur}}(\theta)$$

# prior measurement!

full information after all measurements

But where does our prior belief come from? Most likely from a



This short Bayesian treatment gives us a hint how to add prior information also in the Frequentist case:

$$p(\theta | \text{data}) = \frac{p(\text{data} | \theta) p(\text{data}_{\text{aux}} | \theta)}{p(\text{data})} p_{\text{ur}}(\theta)$$

If our prior information is driven by a prior indepdentnt measurement, we can just use a statistical combination to incorporate it

 $p(\text{data} | \theta) \rightarrow p(\text{data} | \theta)p(\text{data}_{\text{aux}} | \theta)$ 

# **Example Aux Measurement**

Let's go back to: "my background is X ± Y"

 interpret: there is a prior measurement of data such that  $\hat{\alpha} = 0 \pm 1$  would be favored (in some units)

$$\lambda(\alpha = 1) = k_{up}\lambda^{nom}$$
$$\lambda(\alpha = 0) = \lambda^{nom}$$
$$\lambda(\alpha = 1) = k_{up}\lambda^{nom}$$



### The solution HistFactory uses is to add "proxy models" that would produce a similar likelihood for the combination a = 0



## Solution





### Some HistFactory modifiers that are associated with "systematic uncertainties" - will automatically add such a term





# The full HistFactory Model

Some HistFactory modifiers that are associated with



 $c \in \text{channels } b \in \text{bins}_c$ S

# "systematic uncertainties" - will automatically add such a term

# The full HistFactory Model

```
spec = {
    'channels': [
            'name': 'channel1',
            'samples': [
                {'name': 'signal', 'data': [5,10],
                 'modifiers': [
                    {'type': 'normfactor', 'name': 'mu', 'data': None}
                ]},
                {'name': 'background', 'data': [100,50],
                 'modifiers': [
                    {'type': 'normsys', 'name': 'uncrt', 'data': { 'hi': 1.1, 'lo': 0.9 }}
                ]},
```

model.expected\_actualdata([1.0,-1])

model = pyhf.Model(spec) model.expected\_actualdata([1.0,0.0])

array([105., 60.])

model.expected\_actualdata([1.0,1])

array([115., 65.])

array([95., 55.])

# The full HistFactory Model We can actually see the auxiliary data in action:

model = pyhf.Model(spec) model.expected\_actualdata([1.0,0.0])

array([105., 60.])

model.expected\_actualdata([1.0,1])

array([115., 65.])

model.expected\_actualdata([1.0,-1])

array([95., 55.])

model.expected\_data([1.0,0.0])

array([105., 60., 0.])

model.expected\_data([1.0,1.0])

array([115., 65., 1.])

array([95., 55., -1.])

model.expected\_data([1.0,-1.0])

model = pyhf.Model(spec) model.config.auxdata

[0.0]

## **Evaluating the PDF** Take this example: what is the value of the likelihood at $\theta = (\mu = 0, \alpha = 1)$ if we observe N = [102,48]?



 $Pois([102,48] | \lambda(0,1)) = Pois([102,48] | \lambda(0,1))$ = Pois([102,48] | [110,55])

```
{'type': 'normfactor', 'name': 'mu', 'data': None}
{'type': 'normsys', 'name': 'uncrt', 'data': { 'hi': 1.1, 'lo': 0.9 }}
```

Norm( $0 \mid \alpha = 1$ )

## **Evaluating the PDF** Take this example: what is the value of the likelihood at $\theta = (\mu = 0, \alpha = 1)$ if we observe N = [102, 48]?



 $Pois([102,48] | \lambda(0,1)) = Pois([102,48] | \lambda(0,1))$ = Pois([102,48] | [110,55])

# **Evaluating the PDF**

### Upshot: HistFactory is not magic, it's just a useful toolbox to help you model your measurement

**pyhf:** implementation of HistFactory in python

(interpolation algorithms, bookkeeping of constraint terms, ...)

## **Beyond just the Model** Beyond the model building, pyhf also comes with "batteries included" for some basic things • Fitting / Limit Setting, Basic Plotting

```
>>> import pyhf
>>> pyhf.set_backend("numpy")
>>> model = pyhf.simplemodels.uncorrelated_background(
        signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0]
. . .
. . .
>>> data = [51, 48] + model.config.auxdata
>>> test_mu = 1.0
>>> CLs_obs, CLs_exp = pyhf.infer.hypotest(
        test_mu, data, model, test_stat="qtilde", return_expected=True
. . .
. . .
>>> print(f"Observed: {CLs_obs:.8f}, Expected: {CLs_exp:.8f}")
Observed: 0.05251497, Expected: 0.06445321
```

### But for more advanced use, best to use a library around pyhf e.g. cabinetry (next talk)



# Next Steps in pyhf

- The core HistFactory model has been stable for >10 years we know a huge amount of physics can be modelled with it
- But some use-cases need to go beyond (see Lorenz' talk) working on making this easy to to
- custom modifiers (possibly ML-based interpolation)
- pyhf is just the model  $p(x \mid \theta)$  no reason to be frequentist only working on fully consistent Bayesian APIs

## Resources

### https://pyhf.github.io/pyhf-tutorial/introduction.html



LEARN FUNDAMENTALS

### pyhf Tutorial

### Welcome!



Welcome to the pyhf tutorial! We'll first poin (pyhf.readthedocs.io/) and recommend that Let's dive right in.

We won't review the full pedagogy of HistF 2020.



|                                                               | 53      | 0      | E Contents   |
|---------------------------------------------------------------|---------|--------|--------------|
|                                                               |         |        | Welcome!     |
|                                                               |         |        | Installation |
|                                                               |         |        |              |
|                                                               |         |        |              |
|                                                               |         |        |              |
|                                                               |         |        |              |
|                                                               |         |        |              |
|                                                               |         |        |              |
|                                                               |         |        |              |
|                                                               |         |        |              |
|                                                               |         |        |              |
| - differentiable                                              |         |        |              |
| $\mathscr{L}$ ikelihoods                                      |         |        |              |
|                                                               |         |        |              |
| Int you towards our documentation website                     | davar   | aplac  |              |
| it you visit it for much more detailed explanations an        | u exan  | ipies. |              |
|                                                               |         |        |              |
| Factory, so instead we'll point you to the <b>pyhf</b> talk a | t SciPy | /      |              |
|                                                               |         |        |              |
|                                                               | ,       |        |              |
|                                                               |         |        |              |
|                                                               |         | 1      |              |
|                                                               | ó       |        |              |
|                                                               |         |        |              |
| ColDurado                                                     |         |        |              |
|                                                               |         |        |              |