

PyHF use-case: Branching Ratio Determination of $B \rightarrow D^{**} \ell \nu$

Noreen Rauls

(Universität Göttingen)

Analysis Goal

- measurement of branching ratio $B\,\rightarrow\,D^{**}\ell\nu~$ with hadronic FEI
- normalised to $\,B\,\rightarrow\,D^{*}\,\ell\nu$
 - \rightarrow in total two fits

Analysis Overview

Neutral and charged B_{Sig} decay channels

 do binned maximum likelihood fit in with bins in range

- combine backgrounds due to similar shapes
- divide signal into individual decay channels

 include isospin constraints

Same scaling parameter

"modifiers": [{ "name":("mu",) "type": "normfactor", "data": null }

Systematic Uncertainties

- included systematic uncertainties as nuisance parameters
 - LeptonID, pi0, HadronID, Tracking, slow pi, photon, lumi
- for lumi include as parameter

```
"parameters": [
    {
        "name": "lumi",
        "auxdata": [1.0],
        "sigmas": [0.017],
        "bounds": [[0.915, 1.085]],
        "inits": [1.0],
    }
],
```

• Statistical uncertainties from MC

```
"modifiers": [
        {
            "name": "my_staterror",
            "type": "staterror",
            "data": [1.0, 2.0],
        }
],
```


Systematic Uncertainties

component

My Model

{'channels': [{'name': 'measurement', 'samples': [{'name': 'other bgd.', 'data': [0.5970679330901616, 1.3137996892535455, 1.2717256755698056, 1.4321599587267346, 4.768404764908382, 5. 802474698527642, 8.41263112225653, 14.083063154219614, 12.059218291109513, 16.644311234422375, 16.06636699396259, 21.543218196398243, 21.229423218210467, 30.185717718535496, 28.291736 452224203, 1.280398953542008, 0.9052616897885521, 2.5445884915542245, 6.599197818761798, 10.32428133270756, 10.113429188529286, 21.018721696285162, 22.328896956071873, 25.808460073203 204, 2 ,0881401241-60977.664037.,700,2982,388,39,0-2.1732 087763 74, 36 91962 96727 28856 3735 12848 'da 641, .6694 13620 07800 0.4 529041 34001 2.1 02827 60815 5337, 10095 { 'nar 166064 69778 36.72 30594 57, 2 76667 89261 11.88 01926 866107 13.9 362. 27315 26.64 20 589002506125, 7.485574909292409, 0.8328054919872592, 2.065439445605206, 3.1042849437953195, 2.4393950035188037, 9.242139573325845, 11.765912298734579, 14.599793458945486, 26.807783250 906894, 31.581027224451447, 33.451972700520635, 37.98349213784194, 48.789304110211305, 46.287658233786104, 47.589673673148646, 58.63434209920508, 0.19856388596687488, 0.67170740678999 4.796659720924173. 6.011007572753977. 1 111711023501238 1 010731358721076

• Dictionary writing for model automated → many entries

Running the Fit

- possible to use minuit or scipy for minimising the likelihood
- \rightarrow only minuit returns uncertainties

- Use scipy as initial guess
 - → fit twice
 - \rightarrow fit converges quicker

result = overall_fit.fit(
 observation=observation + model.config.auxdata,
 model=model,
 minimiser="scipy",

get the scipy parameters init_pars = result[0].tolist() # do fit with minuit result_minuit = overall_fit.fit(observation + model.config.auxdata, model, init_pars=init_pars, minimiser="minuit",

Results with Asimov Data

 Sample ordering might have changed

Results with Asimov Data

• get results after the fits

→ interpolation done automatically for nuisance parameters

 \rightarrow returns values per bin

Get Errors using **Eachinetry**

- for fit uncertainties:
- subtract statistical error from fit uncertainties in quadrature

 \rightarrow one fit with scaling parameters only (statistical uncertainty)

 \rightarrow then fit with everything

Pull distributions

- investigate pull distributions
 → code taken from this example
- possible to change label names

- Use histogram and Poisson smear every bin
 - \rightarrow looks more data like

• Histogram before the fit

- Use histogram and Poisson smear every bin
 - \rightarrow looks more data like

• Histogram after the fit

Systematic Uncertainties

- possible to build workspace and remove particular modifier
 - \rightarrow use to determine effect of systematic uncertainties

new_workspace = workspace.prune(
 modifiers=not_considered_modifiers

- fit with all systematic uncertainties
- remove particular systematic uncertainty to determine impact on overall result

 \rightarrow also automated that

syst_evaluation =							from Mi	
"all",							ĺ	
"statistics",							ĺ	
"stat_err",							ĺ	
pi0",							i i	
"lumi",							ĺ	
"LeptonID",							ĺ	
"PionID",							l l	
"KaonID",							l l	
"slow_pion",							l l	
"Slow_gamma", "Tracking"							l l	
ITACKING ,								
J # loop throw the l	ist with the	conside	red sva	tematic i	incerta	inties	i i	
for exclude in svs	t evaluation:	CONSTAC	icu sys			TUCTO		
if exclude !=	"all":						l l	
<pre>if exclude == "statistics":</pre>								
not considered modifiers = [
mo	modifier							
<pre>for modifier in model.config.par_order</pre>								
if "mu" not in modifier								
							i i	
<pre>new_workspace = workspace.prune(</pre>								
mo	<i>difiers</i> =not_c	onsider	ed_modi	lfiers			l l	
else:							l l	
not_co	nsidered_modi	fiers =	l				l l	
mo	difier		<i>c</i> .				i i	
to	r modifier in	model.	config.	par_orde	r		l l	
11	exclude in m	oditier					l l	
		kanada						
new_wo	rkspace = wor	kspace.	Jrune (od modi	fiors				
mo	urriers=not_c	onstaere	sa-woar	inters				

Conclusion

- PyHF works well to determine branching ratio of ~ $B~\to~D^{**}\ell\nu$
- examples good to get a first understanding

 → more complex example for binned HEP analysis without
 hypotesting would be helpful
- need to determine bin counts and uncertainties yourself
 - \rightarrow has been automated for this analysis