using pyhf at Belle II

invisible Z' search + tau LFU measurement

Paul Feichtinger

Belle II pyhf workshop

Bonn, 3rd March 2022
Introduction

I used pyhf in two different analysis for

- search for an invisibly decaying Z' (BSM)
 - hypothesis testing

- test LFU in leptonic τ decays (SM)
 - precision measurement
Search for an invisibly decaying Z'

- search is bump hunt in recoil mass distribution
- perform a profile likelihood ratio test with pyhf
- challenges
 - many mass hypotheses to test (~700)
 - low background environment
we derive a 2D template based on the background distribution and the signal resolution

- many zero background bins in 2D template
 - raised error since Pois(n|λ=0) was not defined
 - removed 0 entry bins from the fit
 - should work since pyhf v0.7.0
- **asymptotic formulae** for distribution of test statistic only valid in the large sample limit
- easy to sample from the model to get empirical distribution of test statistic:

  ```python
  model.make_pdf(pars).sample()
  ```
- background-like distributions were not accurately described by the asymptotics
 - used toys to derive expected limits

signal-like distribution (true POI = test POI)

```

```

background-like distribution (true POI = 0)
- compute expected + observed confidence intervals on cross section, for each mass hypothesis
- found that jax backend + scipy optimizer was very fast and robust
Testing LFU in leptonic τ decays

- want to measure the ratio $R_\mu = \frac{\mathcal{B}(\tau^- \to \nu_\tau \mu^- \bar{\nu}_\mu(\gamma))}{\mathcal{B}(\tau^- \to \nu_\tau e^- \bar{\nu}_e(\gamma))}$
- close to one in SM if weak couplings g_μ and g_e are equal
Why do a template fit?

➢ we can achieve very high signal purity (~99%), so why do a template fit?
 ○ previous experiments only divided the background subtracted yields

1. electron / muon identification is leading systematic
 ○ lepton ID uncertainties heavily depend on lepton kinematics
 ○ by performing a fit in bins of lepton momentum we can reduce impact of regions with large uncertainty, without having to remove them

2. reduce uncertainty by providing as much information as possible

3. systematic uncertainties can be included with nuisance parameters directly in the fit

4. can publish full model with pyhf
MC templates

separate events into 2 channels (based on lepton ID), each with 3 samples
Systematic uncertainties

<table>
<thead>
<tr>
<th>Type of modifier</th>
<th>Parameters</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncorrelated shape</td>
<td>7</td>
<td>histosys</td>
</tr>
<tr>
<td>correlated shape</td>
<td>51</td>
<td>shapesys</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>staterror</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>shapesys</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>normsys+histosys</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>histosys</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>histosys</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>normsys</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>histosys</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>histosys</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>histosys</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>lumi</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>normsys+histosys</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>histosys</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>normsys</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>normsys</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>histosys</td>
</tr>
</tbody>
</table>

Type of modifier depends on the correlation between template bins/samples

- **Uncorrelated shape**: fully independent, one nuisance parameter per bin
- **Correlated shape**: need to provide up/down variation, one nuisance parameter
 - can be shared for different samples
 - often cancels in the ratio
- **Partial correlation** can be modeled with multiple correlated shape modifiers
 - using this for lepton ID
Template variations from covariance

correlation for muon fake rate in 7 momentum bins

eigendecomposition

\(C_{\text{sys}} = V U V^T \)

assumed correlation

\(\Gamma = V \sqrt{U} \)

more details in backup

each colour shows a correlated shape variation (histosys)
Correlation of lepton ID systematics

- LID uncertainties (stat + sys) are provided in bins of polar angle, momentum and charge
- Statistical component of LID uncertainties is independent across correction bins
- Correlation for the systematic component is currently unknown, need to make assumptions
 - Want to be conservative and maintain a model that is able to describe the data

Assuming correlation across...

- **Charge**: fully correlated (conservative)
- **θ**: fully correlated (conservative)
- **p**: not clear what is conservative, since fit is performed in momentum bins
compute template variations for different correlations: $\rho_{\text{sys}(p)} = \{0, 0.25, 0.5, 0.75, 1.0\}$
- want to identify the most conservative assumption
- we check the standard deviation of the pull distribution when fitting toys generated with one correlation with a model assuming a different correlation

Pull when having $\rho=0$ in toys and $\rho=1$ in model

$\rho_{\text{sys}(p)} = 1$ seems to be a good choice

Independent variations probably ‘absorbed’ by other systematics (shapesys)
Summary (why I use pyhf)

- easy to build a complicated statistical model out of well defined building blocks
- integrates well with different backends
- written in python
 - transparent: easy to read + modify code
 - interactive: can use jupyter
- limited to binned models, but flexible enough for many applications
 - can even model correlation, even though nuisance parameters are always independent

Thank you!
\[
f(n, a | \eta, \chi) = \prod_{c \in \text{channels}} \prod_{b \in \text{bins}} \text{Pois} (n_{cb} | \nu_{cb} (\eta, \chi)) \prod_{\chi \in \chi} c_\chi (a_\chi | \chi)
\]

Simultaneous measurement of multiple channels

constraint terms for "auxiliary measurements"

\[
\nu_{cb} (\phi) = \sum_{s \in \text{samples}} \nu_{scb} (\eta, \chi) = \sum_{s \in \text{samples}} \left(\prod_{c \in \kappa} \kappa_{scb} (\eta, \chi) \right) \left(\nu_{scb}^0 (\eta, \chi) + \sum_{\Delta \in \Delta} \Delta_{scb} (\eta, \chi) \right)
\]

multiplicative modifiers

additive modifiers

<table>
<thead>
<tr>
<th>Description</th>
<th>Modification</th>
<th>Constraint Term (c_\chi)</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrelated Shape</td>
<td>(\kappa_{scb}(\gamma_b) = \gamma_b)</td>
<td>(\Pi_b \text{Pois} (\tau_b = \sigma_b^{-2}</td>
<td>\rho_b = \sigma_b^{-2} \gamma_b))</td>
</tr>
<tr>
<td>Correlated Shape</td>
<td>(\Delta_{scb}(\alpha) = f_\beta (\alpha</td>
<td>\Delta_{scb,\alpha=-1}, \Delta_{scb,\alpha=1}))</td>
<td>(\text{Gaus} (a = 0</td>
</tr>
<tr>
<td>Normalisation Unc.</td>
<td>(\kappa_{scb}(\alpha) = g_\beta (\alpha</td>
<td>\kappa_{scb,\alpha=-1}, \kappa_{scb,\alpha=1}))</td>
<td>(\text{Gaus} (a = 0</td>
</tr>
<tr>
<td>MC Stat. Uncertainty</td>
<td>(\kappa_{scb}(\gamma_b) = \gamma_b)</td>
<td>(\Pi_b \text{Gaus} (a_{\gamma_b} = 1</td>
<td>\gamma_b, \delta_b))</td>
</tr>
<tr>
<td>Luminosity</td>
<td>(\kappa_{scb}(\lambda) = \lambda)</td>
<td>(\text{Gaus} (l = \lambda_0</td>
<td>\lambda, \sigma_\lambda))</td>
</tr>
<tr>
<td>Normalisation</td>
<td>(\kappa_{scb}(\mu_b) = \mu_b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-driven Shape</td>
<td>(\kappa_{scb}(\gamma_b) = \gamma_b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fit function

\[f(\vec{n}|R_{\mu}, \vec{\chi}) = \prod_{b \in \text{bins}} \text{Pois}(n_b^{\mu} | \nu_b^{\mu}(R_{\mu}, \vec{\chi})) \times \prod_{b \in \text{bins}} \text{Pois}(n_b^{e} | \nu_b^{e}(R_{\mu}, \vec{\chi})) \times \prod_{\chi \in \bar{\chi}} c_{\chi}(a_{\chi} | \chi) \]

\[\nu_b^{\mu}(R_{\mu}, \vec{\chi}) = R_{\mu} \times B_{\epsilon} \times \nu_b^{\mu, \text{sig}}(\vec{\chi}) + \nu_b^{\mu, \text{bkg}(\mu)}(\vec{\chi}) + \nu_b^{\mu, \text{bkg(fake)}}(\vec{\chi}) \]

BF(\tau \rightarrow e\nu\nu) - multiplicative modifier

\[\nu_b^{e}(R_{\mu}, \vec{\chi}) = B_{\epsilon} \times \nu_b^{e, \text{sig}}(\vec{\chi}) + \nu_b^{e, \text{bkg}(e)}(\vec{\chi}) + \nu_b^{e, \text{bkg(fake)}}(\vec{\chi}) \]
Template variations from covariance

- we can model any covariance matrix (for template bins) with multiple shape variations (see PHYSTAT talk by S. Glazov)

- relation between covariance matrix and template variations:
 \[C_{ik}^{\text{sys}} = \sum_{j=1}^{N_s} \Gamma_{ij} \Gamma_{kj} \]

- \(\Gamma_{ij} \) is a variation of bin i associated to systematic source j, in total \(N_s \) independent sources

- variations can be obtained from a covariance matrix via eigendecomposition
 \[C^{\text{sys}} = U V U^T = (V \sqrt{U})(V \sqrt{U})^T = \Gamma \Gamma^T \implies \Gamma = V \sqrt{U} \]

- this results in as many shape variations as we have template bins

- can model any correlations also across samples
Cabinetry

- **cabinetry** provides many convenience functions such as `cabinetry.fit.ranking()`.
- pre-fit and post-fit impact on POI when varying nuisance parameters up/down one standard deviation.
- can be used even if model is not created with cabinetry.
- gives impact of each nuisance parameter individually, impact of a systematic source (e.g. lepton ID) can be obtained with toys.
• test statistic \tilde{t}_μ from Asymptotic formulae for likelihood-based tests of new physics (Cowan, Cranmer, Gross, Vitells)

• based on profile likelihood ratio,

$$\tilde{t}_\mu = -2 \ln \tilde{\lambda}(\mu) = \begin{cases} -2 \ln \left(\frac{L(\mu, \hat{\theta}(\mu))}{L(0, \hat{\theta}(0))} \right) & \hat{\mu} < 0 \\ -2 \ln \left(\frac{L(\mu, \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta})} \right) & \hat{\mu} \geq 0 \end{cases}$$