

invisible Z' search + tau LFU measurement

Paul Feichtinger

Belle II pyhf workshop

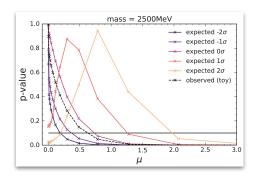
Bonn, 3rd March 2022

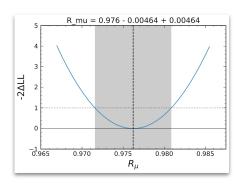
Introduction

I used pyhf in two different analysis for

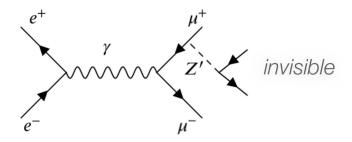
- search for an invisibly decaying Z' (BSM)
 - hypothesis testing

- test LFU in leptonic τ decays (SM)
 - precision measurement

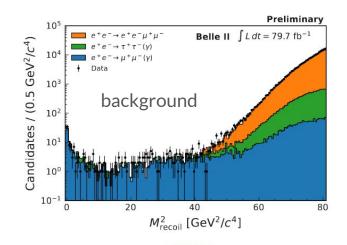


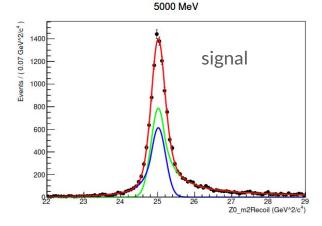


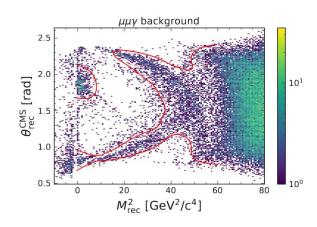
Search for an invisibly decaying Z'



- search is bump hunt in recoil mass distribution
- perform a profile likelihood ratio test with pyhf
- challenges
 - many mass hypotheses to test (~700)
 - o low background environment

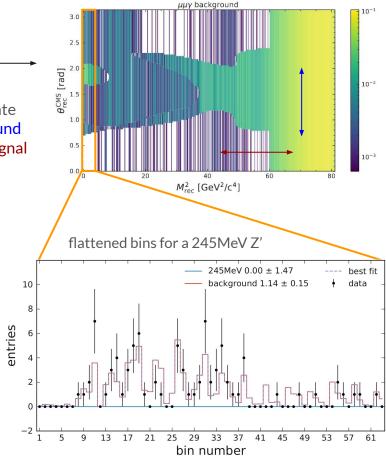






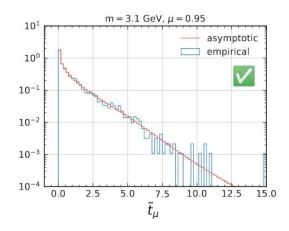
we derive a 2D template based on the background distribution and the signal resolution

- raised error since Pois(n|λ=0) was not defined
- o removed 0 entry bins from the fit
- should work since pyhf v0.7.0

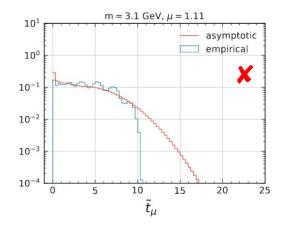


- <u>asymptotic formulae</u> for distribution of test statistic only valid in the large sample limit
- easy to sample from the model to get empirical distribution of test statistic:
 model.make_pdf(pars).sample()
- background-like distributions were not accurately described by the asymptotics
 - used toys to derive expected limits

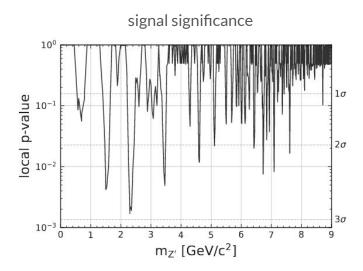
signal-like distribution (true POI = test POI)

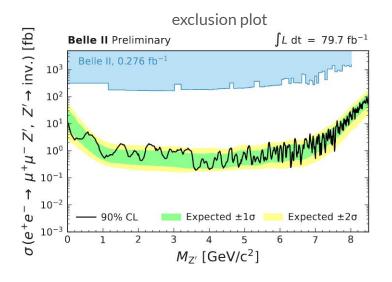


background-like distribution (true POI = 0)



- compute expected + observed confidence intervals on cross section, for each mass hypothesis
- found that jax backend + scipy optimizer was very fast and robust

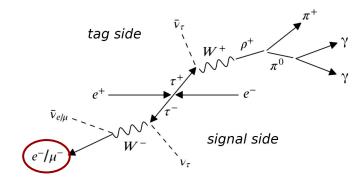


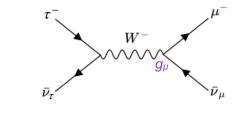


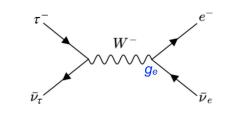
arXiv:2212.03066

Testing LFU in leptonic T decays

- want to measure the ratio $R_{\mu}=rac{\mathcal{B}\left(au^{-}
 ightarrow
 u_{ au}\mu^{-}\overline{
 u}_{\mu}(\gamma)
 ight)}{\mathcal{B}\left(au^{-}
 ightarrow
 u_{ au}e^{-}\overline{
 u}_{e}(\gamma)
 ight)}$
- close to one in SM if weak couplings g_{μ} and g_{e} are equal





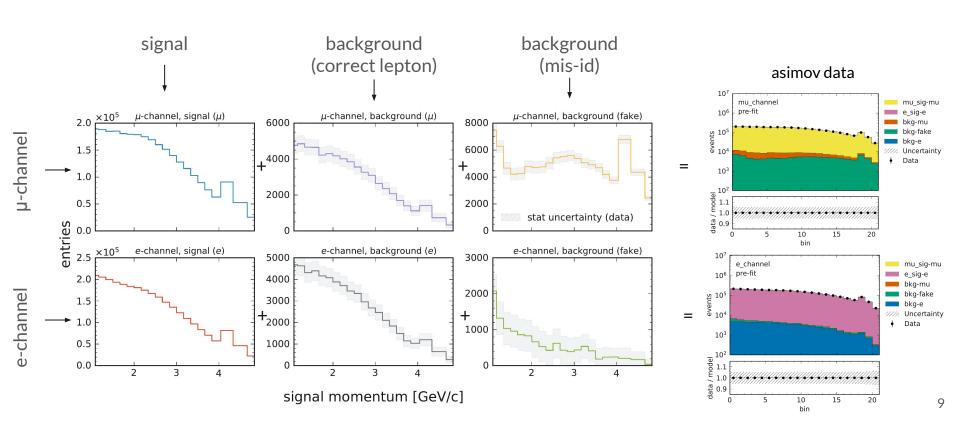


Why do a template fit?

- > we can achieve very high signal purity (~99%), so why do a template fit?
 - o previous experiments only divided the background subtracted yields
- 1. electron / muon identification is leading systematic
 - lepton ID uncertainties heavily depend on lepton kinematics
 - by performing a fit in bins of lepton momentum we can reduce impact of regions with
 large uncertainty, without having to remove them
- 2. reduce uncertainty by providing as much information as possible
- 3. systematic uncertainties can be included with nuisance parameters directly in the fit
- 4. can publish full model with pyhf

MC templates

separate events into 2 channels (based on lepton ID), each with 3 samples



Systematic uncertainties

	uncertainty [%]	parameters	modifier
electron ID	[, 4]	7	histosys
control sample (signal embedding)		51*	shapesys
MC sample size		42	staterror
muon mis-ID		7	histosys
trigger		1+51*	normsys+shapesys
$\pi\pi^0$ modelling		113	shapesys
FSR (20% variation)		2	normsys+histosys
muon ID		7	histosys
electron mis-ID		7	histosys
normalisation		6	normsys
photon efficiency		1	histosys
π^0 efficiency		1	histosys
NN selection		1	histosys
misalignment		51*	shapesys
luminosity		1	lumi
ISR		2	normsys+histosys
decay in flight (5% variation)		1	histosys
$BF(\tau \to e\nu\bar{\nu})$		1	normsys
tracking efficiency		1	normsys
photon energy bias		1	histosys
track momentum		0	histosys
total systematic uncertainty			
statistical uncertainty			
total		253	

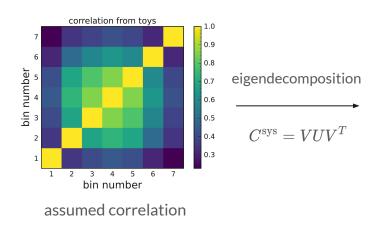
type of modifier depends on the correlation between template bins/samples

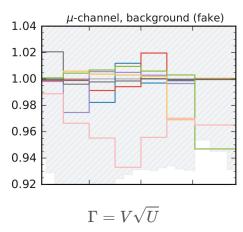
- uncorrelated shape: fully independent, one nuisance parameter per bin
- correlated shape: need to provide up/down variation, one nuisance parameter
 - o can be shared for different samples
 - o often cancels in the ratio
- partial correlation can be modeled with multiple correlated shape modifiers
 - using this for lepton ID

Template variations from covariance

more details in backup

correlation for muon fake rate in 7 momentum bins





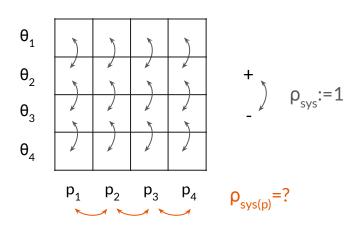
each colour shows a correlated shape variation (histosys)

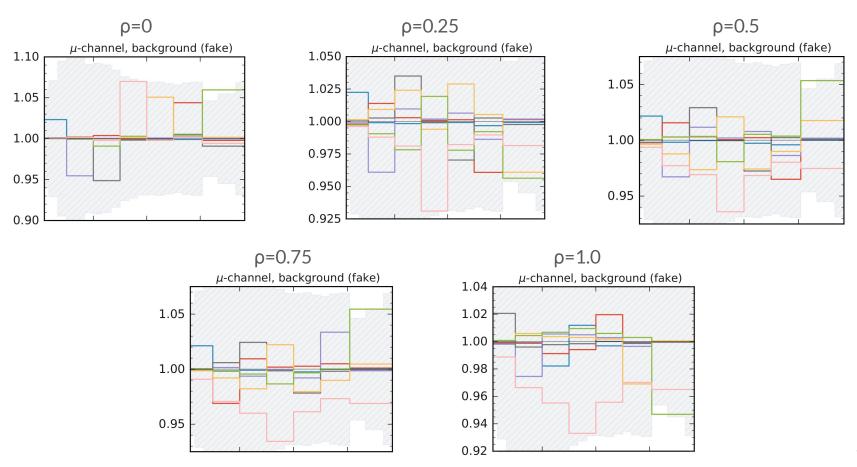
Correlation of lepton ID systematics

- LID uncertainties (stat + sys) are provided in bins of polar angle, momentum and charge
- statistical component of LID uncertainties is independent across correction bins
- correlation for the systematic component is currently unknown, need to make assumptions
 - want to be conservative and maintain a model that is able to describe the data

assuming correlation across...

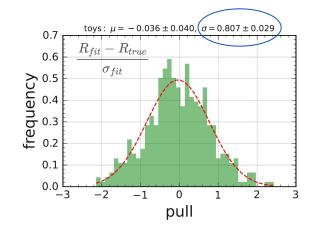
- **charge**: fully correlated (conservative)
- **0**: fully correlated (conservative)
- p: not clear what is conservative, since fit is performed in momentum bins

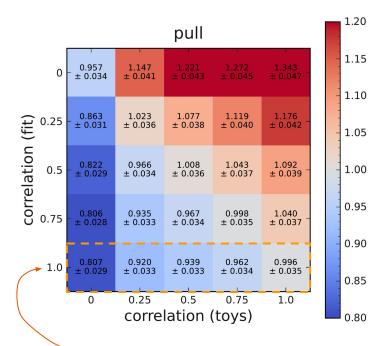




- want to identify the most conservative assumption
- we check the standard deviation of the pull distribution when fitting toys generated with one correlation with a model assuming a different correlation

pull when having ρ =0 in toys an ρ =1 in model





 $\rho_{\text{sys(p)}}$ = 1 seems to be a good choice

independent variations probably 'absorbed' by other systematics (shapesys)

Summary (why I use pyhf)

- easy to build a complicated statistical model out of well defined building blocks
- integrates well with different backends
- written in python
 - transparent: easy to read + modify code
 - o interactive: can use jupyter
- limited to binned models, but flexible enough for many applications
 - o can even model correlation, even though nuisance parameters are always independent

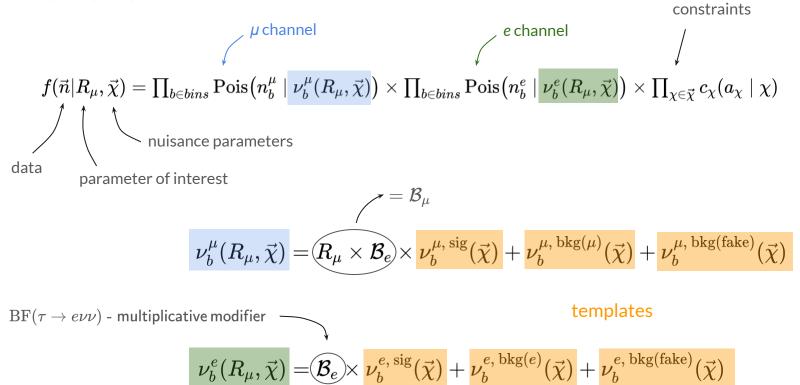
Thank you!

$$f(oldsymbol{n},oldsymbol{a} \mid oldsymbol{\eta},oldsymbol{\chi}) = \prod_{egin{subarray}{c} c \in ext{channels} & ext{ For } i = 0 \ ext{Simultaneous measurement} & ext{for ``auxiliary measurements''} \ \end{array}} \prod_{egin{subarray}{c} c_\chi(oldsymbol{a}_\chi \mid oldsymbol{\chi}) \ ext{ } & ext{constraint terms} \ ext{for ``auxiliary measurements''} \ \end{array}$$

$$\nu_{cb}\left(\boldsymbol{\phi}\right) = \sum_{s \in \text{ samples}} \nu_{scb}\left(\boldsymbol{\eta}, \boldsymbol{\chi}\right) = \sum_{s \in \text{ samples}} \underbrace{\left(\prod_{\kappa \in \kappa} \kappa_{scb}\left(\boldsymbol{\eta}, \boldsymbol{\chi}\right)\right)}_{\text{multiplicative modifiers}} \left(\nu_{scb}^{0}\left(\boldsymbol{\eta}, \boldsymbol{\chi}\right) + \underbrace{\sum_{\Delta \in \boldsymbol{\Delta}} \Delta_{scb}\left(\boldsymbol{\eta}, \boldsymbol{\chi}\right)}_{\text{additive modifiers}}\right)$$

Description	Modification Constraint Term c_χ		Input	
Uncorrelated Shape	$\kappa_{scb}(\gamma_b)=\gamma_b$	$\prod_b \operatorname{Pois} \left(r_b = \sigma_b^{-2} ig ho_b = \sigma_b^{-2} \gamma_b ight)$	σ_b	
Correlated Shape	$\Delta_{scb}(lpha) = f_p\left(lpha \Delta_{scb,lpha=-1}, \Delta_{scb,lpha=1} ight)$	$\mathrm{Gaus}\left(a=0 \alpha,\sigma=1\right)$	$\Delta_{scb,lpha=\pm 1}$	
Normalisation Unc.	$\kappa_{scb}(lpha) = g_p\left(lpha \kappa_{scb,lpha=-1}, \kappa_{scb,lpha=1} ight)$	$\mathrm{Gaus}\left(a=0 \alpha,\sigma=1\right)$	$\kappa_{scb,lpha=\pm 1}$	
MC Stat. Uncertainty	$\kappa_{scb}(\gamma_b) = \gamma_b$	$\prod_b \operatorname{Gaus}\left(a_{\gamma_b} = 1 \gamma_b, \delta_b ight)$	$\delta_b^2 = \sum_s \delta_{sb}^2$	
Luminosity	$\kappa_{scb}(\lambda) = \lambda$	$\mathrm{Gaus}\left(l=\lambda_0 \lambda,\sigma_\lambda\right)$	λ_0,σ_λ	
Normalisation	$\kappa_{scb}(\mu_b)=\mu_b$			
Data-driven Shape	$\kappa_{scb}(\gamma_b)=\gamma_b$			

Fit function



Template variations from covariance

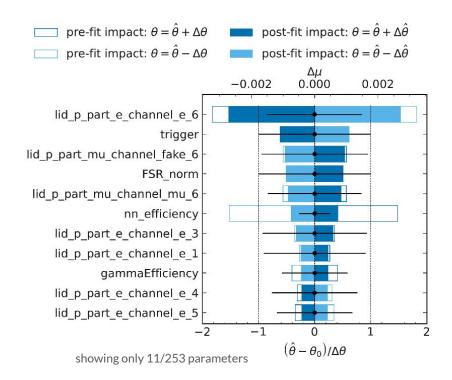
- we can model any covariance matrix (for template bins) with multiple shape variations (see
 PHYSTAT talk by S. Glazov)
- ullet relation between covariance matrix and template variations: $\ C^{
 m sys}_{ik} = \sum_{j=1}^{N_s} \Gamma_{ij} \Gamma_{kj}$
- Γ_{ij} is a variation of bin i associated to systematic source j, in total N_s independent sources
- variations can be obtained from a covariance matrix via eigendecomposition

$$C^{ ext{sys}} = VUV^T = (V\sqrt{U})(V\sqrt{U})^T = \Gamma\Gamma^T \implies \Gamma = V\sqrt{U}$$

- this results in as many shape variations as we have template bins
- can model any correlations also across samples

Cabinetry

- <u>cabinetry</u> provides many convenience functions such as cabinetry.fit.ranking()
- pre-fit and post-fit impact on POI when varying nuisance parameters up/down one standard deviation
- can be used even if model is not created with cabinetry
- gives impact of each nuisance parameter individually, impact of a systematic source (e.g. lepton ID) can be obtained with toys



- test statistic \tilde{t}_{μ} from Asymptotic formulae for likelihood-based tests of new physics (Cowan, Cranmer, Gross, Vitells)
- based on profile likelihood ratio,

$$\tilde{t}_{\mu} = -2 \ln \tilde{\lambda}(\mu) = \begin{cases} -2 \ln \left(L(\mu, \hat{\vec{\theta}}(\mu)) / L(0, \hat{\vec{\theta}}(0)) \right) & \hat{\mu} < 0 \\ -2 \ln \left(L(\mu, \hat{\vec{\theta}}(\mu)) / L(\hat{\mu}, \hat{\vec{\theta}}) \right) & \hat{\mu} \ge 0 \end{cases}$$

