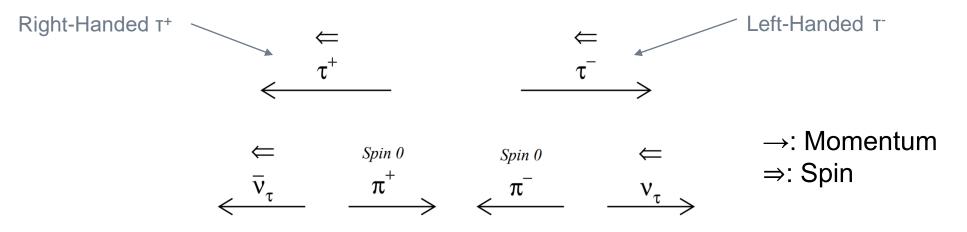
Tau Polarimetry Update

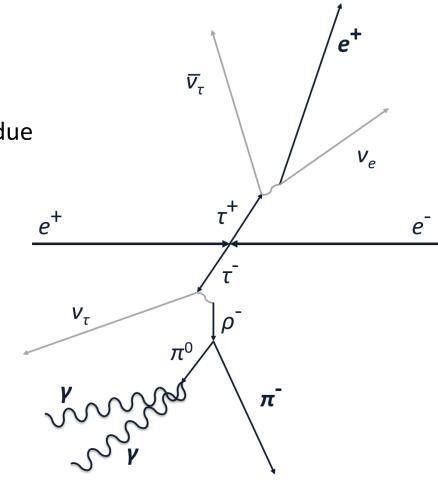
Caleb Miller

B2GM Feb 2023


Tau Polarimetry

The polarization of tau's (P_τ) produced in e⁺e⁻ collisions at 10.58 GeV is related to the electron beam polarization (P_e) through:

$$P_{\tau^{-}} = P_e \frac{\cos\theta}{1 + \cos^2\theta} - \frac{8G_F sg_V^{\tau}}{4\sqrt{2}\pi\alpha} \left(g_A^{\tau} \frac{\overrightarrow{|p|}}{p^0} + 2g_A^e \frac{\cos\theta}{1 + \cos^2\theta} \right)$$


Note: $\cos\theta$ defined as the polar angle of the τ^{-} with respect to the electron beam

Tau polarization information can be extracted from the kinematics of the tau decay

Tau Event Selection

- As a proof of concept, we have developed Tau Polarimetry at *BABAR* using $\tau^{\pm} \rightarrow \rho^{\pm} v_{\tau} \rightarrow \pi^{\pm} \pi^{0} v_{\tau}$ decays
- We expect uncertainties to be highly correlated between detectors due to similar designs
- Final measurement performed on total 424.18 fb⁻¹
- Selected tau events in a 1v1 topology, (ρ vs. e or mu)
 - ρ has large branching fraction, e or mu for clean tag
- Signal candidates are defined as a charged particle with a π^0
- qq
 events are eliminated with the lepton requirement
- Angular cuts and a minimum p_T of 350 MeV reduce two photon and Bhabha contamination
- Achieve a 99.9% pure tau-pair sample (0.05% Bhabha,0.05% μ⁺μ⁻)
- 88% of selected events contain a $\tau^{\pm} \rightarrow \pi^{\pm}\pi^{0}\nu_{\tau}$ decay
 - 10% a1 decays, 2% other hadronic

Status from Oct CM

• Measurement being extended to include low p_T events and muon tag

 $\langle P \rangle = -0.0010 \pm 0.0036_{stat} \pm 0.0030_{sys}$ Preliminary

$\langle P \rangle$ =-0.0002±0.0025_{stat}±0.0023_{sys}±0.xxxx_{sys} w/ new criteria

- Not sure if -0.002 is correct, initially around 1% and slides talk about tension with zero
- Initial results showing signs of improvement in statistics and systematics
- Added a number of new criteria to clean up the selection
- Quality Improvements
 - \Rightarrow Minimum Track p_T
 - ⇒ Minimum Track EMC Deposit
 - \Rightarrow Event p_T > 0.25 MeV -> 0.35 MeV
 - \Rightarrow Rho decay product angular separation

- Other Improvements/Investigations
 - \Rightarrow cos θ definition
 - \Rightarrow charge asymmetry in fits
 - \Rightarrow cancellation of systematic effects in charge asymmetry
 - \Rightarrow polarization dependence on Event p_T

e-Tag Old Systematics

- 15 contributions
- Neutrals dominate 4/6 top systematics

Study	Run 1	Run 2	Run 4	Run 5	Run 6	Final
π^0 Likelihood	0.0032	0.0012	0.0009	0.0010	0.0020	0.0015
Hadronic Split-off Modelling	0.0035	0.0012	0.0015	0.0011	0.0005	0.0011
$\cos\psi$	0.0022	0.0012	0.0006	0.0008	0.0010	0.0010
Angular Resolution	0.0010	0.0015	0.0012	0.0002	0.0007	0.0009
Minimum Neutral Energy	0.0006	0.0009	0.0005	0.0006	0.0016	0.0009
π^0 Mass	0.0018	0.0005	0.0009	0.0006	0.0014	0.0009
$\cos heta^{\star}$	0.0012	0.0007	0.0012	0.0009	0.0007	0.0008
Electron PID	0.0022	0.0008	0.0007	0.0014	0.0010	0.0007
Tau Branching Fraction	0.0007	0.0006	0.0010	0.0006	0.0005	0.0006
Event Transverse Momentum	0.0013	0.0006	0.0006	0.0002	0.0005	0.0005
Momentum Resolution	0.0005	0.0008	0.0004	0.0003	0.0006	0.0005
π^0 Minimum Photon Energy	0.0008	0.0008	0.0009	0.0003	0.0010	0.0004
Rho Mass	0.0007	0.0002	0.0002	0.0004	0.0005	0.0003
Background Modelling	0.0027	0.0002	0.0002	0.0007	0.0009	0.0003
Boost	0.0000	0.0002	0.0001	0.0005	0.0004	0.0002
Total	0.0070	0.0033	0.0032	0.0027	0.0038	0.0030

New Systematics

- 21 contributions
- Neutrals dominate 6/7 top systematics
- pi-0 efficiency is a new correction to attempt to correct few % discrepancy between Data/MC that's persisted in the analysis
- Neutral Energy Scale has replace 50,100 MeV cuts
- Angular cuts, and momentum dependence has gotten small

Source	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Combined
π^0 Efficiency	0.0025	0.0016	0.0013	0.0018	0.0006	0.0017	0.0013
Muon PID	0.0018	0.0018	0.0029	0.0011	0.0006	0.0016	0.0012
Photon Split-off Modelling	0.0015	0.0017	0.0016	0.0006	0.0016	0.0020	0.0011
Neutral Energy Scale	0.0027	0.0012	0.0023	0.0009	0.0014	0.0008	0.0010
π^0 Mass	0.0018	0.0028	0.0010	0.0005	0.0004	0.0004	0.0008
$\pi - \pi^0$ Angular Separation	0.0015	0.0009	0.0016	0.0007	0.0005	0.0005	0.0007
π^0 Likelihood	0.0015	0.0009	0.0015	0.0006	0.0003	0.0010	0.0006
Electron PID	0.0011	0.0020	0.0008	0.0006	0.0005	0.0001	0.0005
Particle Transverse Momentum	0.0012	0.0007	0.0009	0.0002	0.0003	0.0006	0.0004
Boost Modelling	0.0004	0.0019	0.0003	0.0004	0.0004	0.0004	0.0004
Momentum Scale	0.0001	0.0014	0.0005	0.0002	0.0001	0.0003	0.0004
Max EMC Acceptance	0.0001	0.0011	0.0008	0.0001	0.0002	0.0005	0.0003
τ Direction Definition	0.0003	0.0007	0.0008	0.0003	0.0001	0.0004	0.0003
Angular Resolution	0.0003	0.0008	0.0003	0.0003	0.0002	0.0003	0.0003
Background Modelling	0.0005	0.0006	0.0010	0.0002	0.0003	0.0003	0.0003
Event Transverse Momentum	0.0001	0.0013	0.0005	0.0002	0.0002	0.0004	0.0003
Momentum Resolution	0.0001	0.0012	0.0004	0.0002	0.0001	0.0005	0.0003
Rho Mass Acceptance	0.0000	0.0011	0.0003	0.0001	0.0002	0.0005	0.0003
Tau Branching Fraction	0.0001	0.0007	0.0004	0.0002	0.0002	0.0002	0.0002
$\cos \theta^{\star}$ Acceptance	0.0002	0.0006	0.0004	0.0001	0.0001	0.0004	0.0002
$\cos\psi$ Acceptance	0.0002	0.0003	0.0002	0.0002	0.0002	0.0003	0.0002
Quadratic Sum	0.0058	0.0062	0.0054	0.0030	0.0026	0.0038	0.0029

Conclusions

Final (pre-preliminary) measurement:

 $\langle P \rangle = 0.0035 \pm 0.0024_{stat} \pm 0.0029_{sys}$

- Significant improvement in statistics compared to e-tag only: $\langle P \rangle = -0.0010 \pm 0.0036_{stat} \pm 0.0030_{sys}$
- Systematics about the same but much more well understood
- pi-0 efficiency is the only systematic dominated by statistical fluctuations
- Paper in the BaBar review process now

Thank You!